Revisiting the Role of Spatial Frequencies in the Holistic Processing of Faces

Olivia S. Cheung, Jennifer J. Richler, Thomas J. Palmeri, and Isabel Gauthier
Vanderbilt University

V. Goffaux and B. Rossion (2006) argued that holistic processing of faces is largely supported by low spatial frequencies (LSFs) but less so by high spatial frequencies (HSFs). We addressed this claim using a sequential matching task with face composites. Observers judged whether the top halves of aligned or misaligned composites were identical. We replicated the V. Goffaux and B. Rossion (2006) results, finding a greater alignment effect in accuracy for LSF compared with HSF faces on same trials. However, there was also a greater bias for responding “same” for HSF compared with LSF faces, indicating that the alignment effects arose from differential response biases. Crucially, comparable congruency effects found for LSF and HSF suggest that LSF and HSF faces are processed equally holistically. These results demonstrate that it is necessary to use measures that take response biases into account in order to fully understand the holistic nature of face processing.

Keywords: face perception, holistic processing, spatial frequencies, response bias, configural processing
instructed not to attend to the whole face, so finding an advantage for the whole may not be all that surprising. Indeed, one observes a part advantage when parts are studied instead of wholes (Leder & Carbon, 2005). Moreover, a whole advantage can also be found with unfamiliar non-face objects (Gauthier, Williams, Tarr, & Tanaka, 1998).

In contrast, the composite face paradigm leads to holistic effects that are more face specific (McKone, Kanwisher, & Duchaine, 2007) under clear instructions to ignore part of the face. In this task, composite faces are created by combining the top half of one face with the bottom half of a second face. Participants are asked to judge whether the top halves of the study and test composites are identical. Holistic processing is often inferred from better performance when the top and bottom halves of the composite faces are misaligned than when they are aligned. This alignment effect suggests that when the meaningful configuration of the face is disrupted, holistic processing is disrupted (Goffaux & Rossion, 2006; Hole, 1994; Hole, George, & Dunsmore, 1999; Le Grand, Mondloch, Maurer, & Brent, 2004; Michel, Rossion, Han, Chung, & Caldara, 2006; Robbins & McKone, 2007; Young, Hellawell, & Hay, 1987). Goffaux and Rossion (2006) found that the alignment effect was stronger for LSF than it was for HSF faces and concluded that holistic processing of faces is primarily supported by LSF information.

LSF and HSF information in a face may be processed differently, and observers could rely more on LSF for configural processing and more on HSF for featural processing, but this does not necessarily imply that holistic processing of faces is primarily supported by LSF information. Indeed, both configural and featural information can be extracted from both LSF and HSF faces (Goffaux et al., 2005). So, holistic effects in face processing could be observed equally with LSF and HSF faces, as the results of the current study suggest.

There are two commonly used versions of the composite face paradigm that have been used to test holistic processing of faces (see Figure 1 for schematic illustrations of these two versions). In the version used by Goffaux and Rossion (2006), although the target part of the test face can be the same or different from the study face, the irrelevant part of the test face is always different. We refer to this as the partial design (Gauthier & Bukach, 2007). As we described earlier in this section, holistic processing in this task is operationally defined by an alignment effect. Specifically, the accuracy at judging same tops as “same” is significantly greater when the face parts are misaligned than when they are aligned.

In contrast, in the version called the complete design (Gauthier & Bukach, 2007), both the target part and irrelevant part of a test face can be the same or different from the study face. There are two critical trial types. In congruent trials, both the top and bottom parts are the same, or both parts are different. In incongruent trials, one part is the same, and the other part is different. Holistic processing is operationally defined as a congruency effect: discriminability, as measured by d’; is better in congruent than incongruent trials (Farah, Wilson, Drain, & Tanaka, 1998; Gauthier, Curran, Curby, & Collins, 2003; Richler, Gauthier, Wenger, & Palmieri, 2008). A misalignment manipulation can be included in an experiment using the complete design, with a significant decrease in the congruency effect observed for misaligned composites (Richler, Tanaka, Brown, & Gauthier, 2008). But misalignment is not a necessary manipulation in the complete design for measuring holistic processing of faces.

<table>
<thead>
<tr>
<th></th>
<th>Same Trials</th>
<th>Different Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Study Face</td>
<td>Test Face</td>
</tr>
<tr>
<td>Partial Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congruent Trials</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Incongruent Trials</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>Complete Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congruent Trials</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Incongruent Trials</td>
<td>B</td>
<td>D</td>
</tr>
</tbody>
</table>

The complete design and the partial design share many elemental features, but they differ in some fundamental ways that makes us favor the use of the complete design to understand the nature of holistic processing of faces. First, ever since Young et al.’s (1987) study, the most interesting finding from the composite face paradigm is that observers cannot selectively attend to one face part and ignore the other face part. Misalignment is just one transformation of a face composite that reduces this impairment in selective attention. Inversion has a similar effect (e.g., Hole, 1994; Young et al., 1987). And according to Goffaux and Rossion (2006), high spatial frequency filtering may be another. But the use of alignment effects alone roots the operational definition of holistic processing in one specific image transformation—misalignment. We believe that this is both empirically and theoretically problematic—why alignment and not inversion? In contrast, the congruency effect provides a single measure of holistic processing without necessitating a misalignment manipulation to measure it. A variety of manipulations, including misalignment, inversion, or spatial frequency filtering, can be used to experimentally influence the magnitude of the congruency effect, but misalignment has no special experimental or theoretical status.

A second problem is that most experiments using the partial design, including Goffaux and Rossion’s (2006), emphasize the accuracy on same trials and how that accuracy changes with misalignment. In the parlance of signal detection theory, this is the hit rate. It is well known from signal detection theory (Macmillan & Creelman, 1991) that differences in hit rate alone could be caused by differences in discriminability (as measured by d’) or differences in response biases (as measured by relative values of c). But in experiments using the partial design, differences in accuracy (hit rate) are typically interpreted as true discriminability.
differences. Goffaux and Rossion claimed that LSF faces show a significantly larger alignment effect because LSF faces are perceived more holistically—the irrelevant part of the face cannot be ignored because it is perceptually fused with the relevant part of the face. Although that explanation seems possible without examining the entire set of data, including the false-alarm rates, differences in response biases might be lurking as well (see Gauthier & Bukach, 2007, for simulations illustrating this problem). Indeed, regardless of whether the correct answer is same or different, participants are biased toward responding “different” to aligned face parts and “same” to misaligned face parts (Richler, Gauthier, et al., 2008; Richler, Tanaka, et al., 2008). A bias toward responding “same” does not arise because participants are better able to correctly identify same top parts when a face is misaligned—they incorrectly respond “same” more often as well. Other manipulations, such as inversion (Farah et al., 1998; Wenger & Ingvatsen, 2002), also influence response bias. We show the same for spatial frequency filtering in this study.

If false alarms in the partial design were examined, discriminability and response bias differences could be calculated in ways analogous to what is typically done in the complete design. But a third problem with the partial design is that it confounds the response with congruency, and congruency itself has been shown to influence response bias. The response relation between the top and bottom parts on “same” trials is always incongruent; although the top is the same, the bottom is different and is always different. But the response relation between the top and bottom parts for “different” trials is always congruent; both parts are different. Previous work has shown that participants are more likely to respond “different” in incongruent trials than they are in congruent trials (Farah et al., 1998; Richler, Tanaka, et al., 2008). This response bias could interact with other factors, such as misalignment. Without the full complement of trials from the complete design, it is impossible to know whether a manipulation affects the ability of observers to selectively attend to a face part (discriminability), whether it affects response biases, or whether it does both.

In this study, we extended Goffaux and Rossion’s (2006) study by using the complete composite design, comparing performance on LSF and HSF faces that are aligned or misaligned. Like Goffaux and Rossion, we can measure the alignment effect as the accuracy in the same–incongruent trials in the complete design, in which the top parts were the same and the bottom parts were different, for aligned versus misaligned faces. Replicating Goffaux and Rossion’s study, we expected to find a significantly larger alignment effect for LSF than for HSF faces with same trials in the partial design. If observers truly find it more difficult to selectively attend to a single face part in LSF than they do in HSF (aligned) faces, presumably because LSF faces are more perceptually holistic than HSF faces, then there should also be a significantly larger alignment effect when false-alarm rate is also taken into consideration. Moreover, there should be a significantly larger congruency effect for LSF than HSF faces in the complete design. Alternatively, differences in performance could instead be reflected by differences in response bias.

Method

Participants

Twenty-three undergraduate students (M age = 18.9 years, 6 men and 17 women) at Vanderbilt University with normal or corrected-to-normal vision participated for course credits. Data from 2 participants were discarded because of a large (>10%) number of trials without a response.

Stimuli

We used Goffaux and Rossion’s (2006) 20 face stimuli (10 male and 10 female) to form face composites. All faces were approximately 180 pixels wide and 250 pixels high and were fitted onto a 256 × 256-pixel gray background. The faces were Fourier transformed and multiplied by low-pass and high-pass Gaussian filters that preserved either low (< 8 cycles/face width) or high (> 32 cycles/face width) spatial frequencies (see Figure 2), creating LSF or HSF faces, respectively. Full-spectrum (FS) faces were also used. In Goffaux and Rossion’s study, the study stimuli were 20 real faces, and the test stimuli were 20 composites made by pairing each target top part with a bottom part from another individual of the same sex. Because these are real faces, there is perfect alignment of the top and bottom parts, whereas composite faces never align perfectly; as such, if the original real faces had been used in our study where the top and bottom parts can be the same or different, it would have been perceptually obvious when a same–congruent test stimulus was shown, because it would have been a real face, not a composite. Therefore, we randomly paired top and bottom parts from different individuals of the same sex to form both the study and test stimuli. Each of the 20 target top parts appeared approximately once in each condition.

Procedure

The experimental procedure was essentially identical to that of Goffaux and Rossion (2006), except that the additional trial types required by the complete design were included. Participants were instructed to match the top parts of the composites while ignoring the bottom parts. The experiment was run within the Psychophysics Toolbox running in Matlab 5.2 on Macintosh computers with 19-in. (48.3-cm.) monitors (with a screen resolution of 1024 × 768 and a 85-Hz refresh rate). A study composite face was shown for 600 ms, followed by a 300-ms blank, followed by a test composite face for 1 s or until a response was made (whichever came first). Participants were seated 110 cm away from the monitor with a chin rest in order to maintain that distance. The aligned faces subtended a visual angle of 4.1° × 3.1°, and the misaligned faces were 4.1° × 3.7°. There was a 3-mm (0.15”) gap inserted between

![Figure 2. Examples of a non-filtered full-spectrum composite face (FS), low-pass filtered composite face (LSF), and high-pass filtered composite face (HSF) used as stimuli. Stimuli were adapted from “Faces Are ‘Spatial’—Holistic Face Perception is Supported by Low Spatial Frequencies,” by V. Goffaux and B. Rossion, 2006, Journal of Experimental Psychology: Human Perception and Performance, 32, 1023–1039. Copyright 2006 by the American Psychological Association.](image)
analyses of variance (ANOVA)s were applied to accuracy and correct response times (RTs) for “same” (incongruent) trials in the partial design, with Spatial Frequency (FS vs. LSF vs. HSF) and Alignment (aligned vs. misaligned) as factors. We then analyzed all the trials in the partial design on sensitivity, zHit − zFA, response criterion, −0.5 × (zHit + zFA), and correct RTs with the same factors. Finally, we analyzed data using all trials from the complete design trials in terms of the congruency and alignment effects. Three-way repeated measures ANOVAs were applied to sensitivity, response criterion, and correct RTs, with Spatial Frequency, Alignment, and Congruency (congruent vs. incongruent) as factors. For all analyses, Fisher’s LSD tests were used for planned comparisons among the spatial frequency conditions, and Scheffé’s tests were used post hoc. Bonferroni tests corrected for the number of planned comparisons of interest were used when the main effects were not significant.1

Results

Hit Rates and Corresponding Correct Response Times in the Partial Design (Alignment Effect With Same–Incongruent Trials)

We replicated the basic finding of Goffaux and Rossion (2006) that the alignment effect was larger for LSF than HSF faces (see Figure 3). There was a significant main effect of spatial frequency in accuracy, \(F(2, 40) = 4.37, p < .05, \eta^2_p = .18 \) but not for RTs (\(p = .39 \)). Accuracy was poorer for LSF than it was for HSF faces (\(p < .01 \)) and poorer for LSF than it was for FS faces (\(p < .05 \)), but there was no significant difference between accuracies for HSF and FS faces (\(p = .40 \)). There was a significant main effect of alignment in both accuracy, \(F(1, 20) = 50.71, p < .0001, \eta^2_p = .72 \) and RTs, \(F(1, 20) = 35.41, p < .0001, \eta^2_p = .61 \), with higher accuracy and faster responses on misaligned than there were on aligned trials. Crucially, as in Goffaux and Rossion, we observed a significant interaction between spatial frequency and alignment in accuracy, \(F(2, 40) = 3.63, p < .05, \eta^2_p = .15 \), but not in RTs (\(p = .23 \)). The alignment effect was larger for LSF faces than it was for either HSF or FS faces (\(p < .05 \)). Following Goffaux and Rossion, we conducted separate ANOVAs on accuracy for aligned trials and misaligned trials. Like them, we did not find a significant difference across spatial frequencies for misaligned composites, \(F(2, 40) = 1.29, p > .28 \); differences in spatial frequencies were observed only with aligned composites, \(F(2, 40) = 5.74, p < .01, \eta^2_p = .22 \). Critically, accuracy was lowest for aligned LSF composites compared with aligned FS and aligned HSF composites (\(ps < .05 \)), and there was no significant difference between aligned FS and aligned HSF composites (\(p = .40 \)).

To summarize, we replicated the results of Goffaux and Rossion (2006) by showing that performance on aligned same trials was lower for LSF than HSF faces, whereas there was no difference for misaligned same trials. But is this because it is harder to ignore a face part in a LSF face than it is in an HSF face? In other words, are LSF faces perceived more holistically than HSF faces? If that’s true, then there should also be a difference in sensitivity when all trials in the partial design are examined. Alternatively, there could be differences in response bias for LSF and HSF faces.

1 Hit rates and false-alarm rates in the partial and complete designs are illustrated in Appendixes A and B, respectively. Accuracy for each condition in the complete design is shown in Appendix C.
Sensitivity and Correct Response Times in the Partial Design (Alignment Effect With Same–Incongruent and Different–Congruent Trials)

We obtained a significant main effect of spatial frequency in d', $F(2, 40) = 4.68$, $p = .015$, $\eta_p^2 = .19$, but not in RTs ($p > .71$), with significantly higher d' for FS than for LSF and HSF faces ($p < .02$), whereas there was no difference in d' between LSF and HSF ($p > .72$). There was a significant effect of alignment, d', $F(1, 20) = 36.78$, $p < .0001$, $\eta_p^2 = .65$, and RTs, $F(1, 20) = 26$, $p < .0001$, $\eta_p^2 = .57$, with better and faster performance for misaligned than for aligned trials. While alignment effects were comparable in RTs across the spatial frequency conditions, $F(2, 40) = 0.99$, $p = .38$, there was a significant interaction between spatial frequency and alignment in d', $F(2, 40) = 6.36$, $p < .005$, $\eta_p^2 = .24$. Although the alignment effect was reduced for FS composites compared with LSF and HSF composites ($p < .02$), the alignment effects were comparable between LSF and HSF composites ($p = .36$; see Figure 4).

Response Criterion (c) in the Partial Design (Alignment Effect With Same–Incongruent and Different–Congruent Trials)

While there was no significant difference in the alignment effect between LSF and HSF faces measured in d', there were differential biases between them (see Figure 4). Crucially, there is a significant main effect of spatial frequency in response criterion, $F(2, 40) = 6.01$, $p = .005$, $\eta_p^2 = .23$, revealing that participants were more likely to respond “different” to FS and LSF composites than they were to HSF composites ($p < .005$), and there was no significant difference between FS and LSF composites ($p = .95$). As expected, there was a significant effect of alignment, $F(1, 20) = 37.95$, $p < .0001$, $\eta_p^2 = .65$; participants were more likely to respond “different” to aligned composites than misaligned composites. The interaction between spatial frequency and alignment was significant, $F(2, 40) = 5.27$, $p < .01$, $\eta_p^2 = .21$. Participants were more likely to respond “different” to aligned than misaligned FS and LSF composites than they were to respond “same” to misaligned compared with aligned HSF composites ($p < .05$). There was no significant difference between FS and LSF composites ($p = .39$).

When taking into account the false-alarm rates with all of the partial design trials, we found no discriminability difference between LSF and HSF composites. This result supports the idea that both LSF and HSF faces are processed equally holistically. Instead, there was a significant response bias, suggesting that the alignment effect obtained in hit rates by Goffaux and Rossion (2006) might not be merely a perceptual effect. As we mentioned before, the partial design suffers from a possible confound of response congruency between the task-relevant and irrelevant part. Next, we examined the congruency effect with all trials in the complete design.

Sensitivity and Correct Response Times in the Complete Design (Congruency and Alignment Effects With All Trials)

We found that LSF faces do not lead to stronger holistic effects than HSF faces: The congruency effects are comparable for both face types (see Figure 5). The main effect of spatial frequency was significant in d', $F(2, 40) = 11.46$, $p < .0001$, $\eta_p^2 = .36$, but not significant in RTs ($p > .45$), with d' significantly higher for FS than LSF or HSF faces ($p < .005$). However, d' was comparable for both LSF and HSF faces ($p = .23$). Replicating standard findings, performance was better and faster for congruent trials than incongruent trials, as revealed by a significant main effect of congruency, d', $F(1, 20) = 26.21$, $p < .0001$, $\eta_p^2 = .57$; RTs, $F(1, 20) = 7.13$, $p < .0001$, $\eta_p^2 = .29$, and d' was higher for misaligned composites than aligned composites, as revealed by a significant effect of alignment, d', $F(1, 20) = 25.45$, $p < .0001$, $\eta_p^2 = .56$; RTs, $F(1, 20) = 35.41$, $p < .0001$, $\eta_p^2 = .64$. There was a larger congruency effect for aligned than misaligned composites, as indicated by a significant interaction between alignment and congruency in d', $F(1, 20) = 28.7$, $p < .0001$, $\eta_p^2 = .59$; but not significant in RTs ($p = .07$). There was also a significant interaction between spatial frequency and alignment in d', $F(2, 40) = 4.34$, $p < .05$, $\eta_p^2 = .18$; but not significant in RTs ($p = .23$). There were significant alignment effects for both LSF and HSF faces ($p < .0005$), with higher d' for misaligned than for aligned trials, and there was no significant difference between aligned and misaligned FS faces ($p = .63$). But most critically, there was no significant difference in the magnitudes of the congruency effect for aligned FS, LSF, and HSF faces, and misalignment similarly reduced the congruency effect across all spatial frequency conditions. In fact, neither the interaction between spatial frequency and congruency, d', $F(2, 40) = 1.5$, $p = .23$; RTs, $F(2, 40) = 2.15$, $p = .13$, nor the three-way interaction of spatial frequency, alignment, and congruency, d', $F(2, 40) = .45$, $p = .64$; RTs, $F(2, 40) = 1.55$, $p = .22$, reached significance.

Although LSF faces showed a significantly larger alignment effect in the partial design (greater accuracy on same–incongruent trials for misaligned than for aligned trials) than HSF faces, there was no significant difference in the congruency effect in d' (or RTs) for LSF and HSF faces. Faces containing either type of spatial frequency information can be processed holistically.

Response Criterion (c) in the Complete Design (Congruency and Alignment Effects With All Trials)

Although there were no differences in d' or RTs between LSF and HSF faces, there was a significant difference in response criteria (reflecting response biases) as a function of spatial frequency as well as alignment. Participants were more likely to respond “different” to FS and LSF faces and more likely to respond “same” to HSF faces (see Figure 5). This was confirmed by a significant main effect of spatial frequency, $F(2, 40) = 12.58$, $p < .0001$, $\eta_p^2 = .39$. Participants were more likely to respond “same” to HSF faces than they were to either LSF or FS faces ($p < .0005$), and there was no difference between LSF and FS faces ($p = .46$). Participants were also more likely to respond “same” to misaligned than aligned composites, as revealed by a significant main effect of alignment, $F(1, 20) = 23.24$, $p = .0001$, $\eta_p^2 = .54$. The main effect of congruency was not significant, $F(1, 20) = 3.56$, $p = .074$. Crucially, as predicted, although Goffaux and Rossion (2006) found little or no difference between hit rates for aligned and misaligned HSF faces, we demonstrated that participants were significantly more biased toward responding “same” to HSF faces than they were to LSF or FS faces ($p < .001$), and there was no significant difference in the response criteria between aligned and misaligned HSF composites ($p =$
Conversely, we found that participants were more likely to respond “different” to aligned than they were to misaligned faces in FS and LSF conditions ($p < .001$). This was confirmed by a significant interaction between spatial frequency and alignment, $F(2, 40) = 5.85$, $p < .01$, $\hat{\eta}^2_g = .23$. This interaction suggests that the reduced alignment effect for HSF faces compared with LSF faces in the partial design trials could be accounted for by differences between LSF and HSF response criteria, not a discriminability difference. The interaction between spatial frequency and congruency was not significant, $F(2, 40) = 2.12$, $p = .13$. There was a significant interaction between alignment and congruency, $F(1, 20) = 8.3$, $p < .001$, $\hat{\eta}^2_g = .29$: Participants were more likely to respond “same” to congruent than they were to incongruent trials with aligned composites ($p < .001$), but there was no difference between congruent and incongruent trials for misaligned composites ($p > .85$). The three-way interaction of spatial frequency, alignment, and congruency was not significant, $F(2, 40) = 3.05$, $p = .058$. Taken together, these results suggest that the reduced alignment effect in same (incongruent) trials for HSF faces in Goffaux and Rossion (2006) may be driven by differences in response biases rather than discriminability.

Discussion

We reexamined the role of spatial frequencies in the holistic processing of faces. Goffaux and Rossion (2006) reported that accuracy in judging a relevant part of a test face as the same as a study face while ignoring the irrelevant part of that face was significantly lower for aligned LSF than aligned HSF faces; this difference was significantly attenuated when the face parts were misaligned. These results suggested that holistic processing of faces is largely supported by LSFs and significantly less so by HSFs. In other words, for LSF faces, perception is holistic in the sense that the relevant and irrelevant parts of the face are perceptually fused, making it difficult to attend to one
part while ignoring the other part. Although we replicated the difference in accuracy on same trials for LSF and HSF faces reported by Goffaux and Rossion, we found that this effect is caused by differential response biases, not differences in perceptual discriminability, for LSF and HSF faces. Since both configural and featural information can be extracted from LSF and HSF faces (Goffaux et al., 2005), it is not surprising that holistic processing—combining individual features into a “gestalt”—occurs equally for both LSF and HSF faces. In particular, given that a critical factor in successful face recognition is the overlap of spatial frequency bands between study and test stimuli (Boutet, Collin, & Faubert, 2003; Collin, Liu, Troje, McMullen, & Chaudhuri, 2004; Kornowski & Petersik, 2003; Liu, Collin, Rainville, & Chaudhuri, 2000), it is possible that holistic processing may occur for HSF only when both study and test faces contain this information. This does not mean that LSF and HSF information are processed by the same mechanisms or have the same relations with neural markers of holistic processing. For instance, while either LSF or HSF faces appear sufficient to evoke selective responses in the FFA compared with other objects (Eger, Schyns, & Kleinschmidt, 2004; Gauthier, Curby, Skudlarski, & Epstein, 2005; Lerner, Hendler, Ben-Bashat, Harel, & Malach, 2001; Malach, Peppas, Benson, Kwong, Jiang, Kennedy, et al., 1995; Winston, Vuilleumier & Dolan, 2003), the FFA responses to LSF and HSF faces have been found to be statistically independent, suggesting partly distinct populations of face cells in different spatial frequency bands (Gauthier et al., 2005). Likewise, ERP recordings also suggest that LSFs and HSFs are processed differently, even though either of them can support face selective responses under different conditions (Goffaux, Gauthier, & Rossion, 2003; Goffaux, Jemel, et al., 2003; Halit et al., 2006).

As in many experimental applications of the partial design version of the composite face paradigm (Le Grand et al., 2004; Michel et al., 2006; Robbins & McKone, 2007), Goffaux and Rossion (2006) emphasized the accuracy on those trials in which the relevant part of the study face and the test face were the same; as a partial design, the irrelevant part was always different. In the paradigm of signal detection theory, this analysis examined only at the hit rates. What about the false alarms, which in this case would be erroneously saying “same” when the relevant part was different? When we analyzed the partial design trials from our data using signal detection theory, combining both hits and false alarms, we found no significant difference in d' for LSF and HSF faces, but there was a significant difference in criterion, reflecting a differential response bias. Participants were significantly more likely to respond “different” to LSF-aligned faces than to HSF-aligned faces. This is then reflected in the hit rates as lower accuracy on same trials for LSF-aligned faces. But this is a bias, not a discriminability difference.

As noted by Gauthier and Bukach (2007), one problem with the partial design is that its same trials are always incongruent (the top is the same, but the bottom is different), whereas its different trials are always congruent (the top is different, and the bottom is different). Congruency could affect d' or response bias or both, so it seems experimentally prudent to break this confound. In the complete design, both the relevant and the irrelevant part can be the same or different on every trial. When we analyzed all of our data from the complete design, we again found no significant difference in d' for HSF and LSF faces. But again, there was a significant response bias. Participants were more likely to respond “different” to LSF faces than to HSF faces. In addition, participants were more likely to respond “different” to aligned than to misaligned LSF faces. Without taking response bias into account, there is an illusion of being less accurate on same trials, especially for aligned LSF faces.

At the moment, there is no compelling theoretical account of these differential response biases. But we can speculate about possible sources. For instance, there are differences in the perceived visual persistence across spatial frequencies. Specifically, HSF information appears to visually persist longer than LSF information, even when the visual information is presented for the same amount of time (Bowling, Lovegrove, & Mapperson, 1979; Meyer & Maguire, 1981; see also May, Brown, Scott, & Donlon, 1990). Visual persistence of the faces could be misinterpreted as the amount of time or effort expended in searching for differences between the test face and the remembered study face. This could lead to a response bias toward saying “same” to HSF faces without any real difference in discriminability or response times between LSF and HSF faces.

Figure 5. Performance in the complete design. Sensitivity (d'; Panel A) and response criterion (c; Panel B) on congruent and incongruent trials for aligned versus misaligned faces in each spatial frequency condition (FS, LSF, and HSF). Criterion values above 0 reflect a bias toward responding “different,” and criterion values below 0 reflect a bias toward responding “same.” The congruency effect is the difference in d' and RTs between congruent and incongruent trials. Error bars show 95% confidence intervals of the $3 \times 2 \times 2$ within-subjects interaction effect.
In addition, differential familiarity with LSF versus HSF faces in the world could produce differential response biases in the laboratory. Consider that our everyday experience with LSF and HSF information in faces is asymmetrical. We often see distant faces that are recognized using LSF but not HSF information. But we infrequently encounter a face with HSF information but no LSF information outside the laboratory. Recent face recognition research has found that frequent exposure to faces of a particular race in the laboratory can lead to a bias toward responding “different” posttest compared with pretest, without necessarily leading to any differences in discriminability (Tanaka & Droucker, 2008). More real-world exposure to LSF than to HSF faces could influence response biases in a similar manner. Analogous effects on response bias are observed in the memory domain. In recognition memory tasks, participants sometimes adjust their response criteria because they mistakenly believe that extremely infrequent items are more difficult to remember than more frequent items (Stretch & Wixted, 1998; Wixted, 1992). If participants assume that their memory for highly infrequent faces (in this case, HSF faces) is poor, they may be inclined to compensate by responding “same” to HSF faces more often, leading to a high false-alarm rate. But because these items are well encoded after all, the hit rate is also high (Wixted, 1992). Intriguingly, participants not only showed a bias toward responding “same” to HSF compared with LSF faces, they are also more likely to respond “same” to faces in other unusual configurations (e.g., misaligned or inverted) compared with more regular configurations (e.g., aligned or upright, Hole, 1994; Richler, Tanaka, et al., 2008).

In any case, it is also unclear whether the mechanisms at the origins of the biases in the composite task may influence responses in other tasks (such as the whole-part task). As a matter of fact, even the locus of the congruency effects obtained in the composite task with sensitivity measures is controversial, with some arguing for a perceptual effect (Farah et al., 1998) and others suggesting a more decisional activity measures is controversial, with some arguing for a perceptual effect (Farah et al., 1998) and others suggesting a more decisional locus (Richler, Gauthier, et al., 2008; Richler, Tanaka, et al., 2008).

However, what is made clear by our results is that ignoring the possibility of important response biases by using the partial design with more regular configurations (e.g., aligned or upright, Hole, 1994; Richler, Tanaka, et al., 2008).

Consider that our everyday experience with LSF and HSF information diagnostic changes the perception of complex visual stimuli. Cognitive Psychology, 34, 72–107.

1334 CHEUNG, RICHLER, PALMERI, AND GAUTHIER

References

Appendix A

Figure A1. Hit rates (A) and false-alarm rates (B) in the partial design. Error bars show 95% confidence intervals of the 3 × 2 within-subjects interaction effect.

Appendix B

Figure B1. Hit rates (A) and false-alarm rates (B) in the complete design. Error bars show 95% confidence intervals of the 3 × 2 × 2 within-subjects interaction effect.
Appendix C

Accuracy for Each Condition in the Complete Design

<table>
<thead>
<tr>
<th>Spatial frequency</th>
<th>Alignment</th>
<th>Congruency</th>
<th>Response</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS</td>
<td>Aligned</td>
<td>Congruent</td>
<td>Same</td>
<td>89.52</td>
</tr>
<tr>
<td>FS</td>
<td>Aligned</td>
<td>Incongruent</td>
<td>Different</td>
<td>96.02</td>
</tr>
<tr>
<td>FS</td>
<td>Aligned</td>
<td>Incongruent</td>
<td>Same</td>
<td>81.18</td>
</tr>
<tr>
<td>FS</td>
<td>Aligned</td>
<td>Incongruent</td>
<td>Different</td>
<td>93.09</td>
</tr>
<tr>
<td>FS</td>
<td>Misaligned</td>
<td>Congruent</td>
<td>Same</td>
<td>82.31</td>
</tr>
<tr>
<td>FS</td>
<td>Misaligned</td>
<td>Incongruent</td>
<td>Different</td>
<td>89.04</td>
</tr>
<tr>
<td>FS</td>
<td>Misaligned</td>
<td>Incongruent</td>
<td>Same</td>
<td>91.49</td>
</tr>
<tr>
<td>FS</td>
<td>Misaligned</td>
<td>Incongruent</td>
<td>Different</td>
<td>93.10</td>
</tr>
<tr>
<td>LSF</td>
<td>Aligned</td>
<td>Congruent</td>
<td>Same</td>
<td>86.98</td>
</tr>
<tr>
<td>LSF</td>
<td>Aligned</td>
<td>Incongruent</td>
<td>Same</td>
<td>72.98</td>
</tr>
<tr>
<td>LSF</td>
<td>Aligned</td>
<td>Incongruent</td>
<td>Different</td>
<td>85.14</td>
</tr>
<tr>
<td>LSF</td>
<td>Misaligned</td>
<td>Congruent</td>
<td>Same</td>
<td>87.00</td>
</tr>
<tr>
<td>LSF</td>
<td>Misaligned</td>
<td>Incongruent</td>
<td>Different</td>
<td>89.82</td>
</tr>
<tr>
<td>LSF</td>
<td>Misaligned</td>
<td>Incongruent</td>
<td>Same</td>
<td>89.12</td>
</tr>
<tr>
<td>LSF</td>
<td>Misaligned</td>
<td>Incongruent</td>
<td>Different</td>
<td>85.22</td>
</tr>
<tr>
<td>HSF</td>
<td>Aligned</td>
<td>Congruent</td>
<td>Same</td>
<td>93.36</td>
</tr>
<tr>
<td>HSF</td>
<td>Aligned</td>
<td>Incongruent</td>
<td>Different</td>
<td>84.46</td>
</tr>
<tr>
<td>HSF</td>
<td>Aligned</td>
<td>Incongruent</td>
<td>Same</td>
<td>84.36</td>
</tr>
<tr>
<td>HSF</td>
<td>Misaligned</td>
<td>Congruent</td>
<td>Same</td>
<td>76.47</td>
</tr>
<tr>
<td>HSF</td>
<td>Misaligned</td>
<td>Incongruent</td>
<td>Same</td>
<td>93.38</td>
</tr>
<tr>
<td>HSF</td>
<td>Misaligned</td>
<td>Incongruent</td>
<td>Different</td>
<td>85.44</td>
</tr>
<tr>
<td>HSF</td>
<td>Misaligned</td>
<td>Incongruent</td>
<td>Same</td>
<td>93.15</td>
</tr>
<tr>
<td>HSF</td>
<td>Misaligned</td>
<td>Incongruent</td>
<td>Different</td>
<td>84.44</td>
</tr>
</tbody>
</table>

Note. The partial design conditions appear in boldface.