
MERE	  EXPOSURE	  AND	  CATEGORY	  LEARNING	   Folstein	  et	  al.	  

1	  

 
 
 

Mere exposure alters category learning of novel objects 
 

Jonathan R. Folstein*1, Isabel Gauthier1, Thomas J. Palmeri1 
| 

1Department of Psychology, Vanderbilt University 
July 14, 2010 

 
 
 

Correspondence: 
Jonathan Folstein  
Psychology Department 
Vanderbilt University 
PMB 407817 
2301 Vanderbilt Place 
Nashville, TN 37240-7817 
jonathan.r.folstein@gmail.com 
 



MERE	  EXPOSURE	  AND	  CATEGORY	  LEARNING	   Folstein	  et	  al.	  

2	  

Abstract 
 

We investigated how mere exposure to complex objects with correlated or uncorrelated 
object features affects later category learning of new objects not seen during exposure. 
Correlations among pre-exposed object dimensions influenced later category learning. 
Unlike other published studies, the collection of pre-exposed objects provided no 
information regarding the categories to be learned, ruling out unsupervised or incidental 
category learning during pre-exposure. Instead, results are interpreted with respect to 
statistical learning mechanisms, providing one of the first demonstrations of how 
statistical learning can influence visual object learning. 
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1. Introduction 
Humans can acquire knowledge about the structure of their environment by mere exposure through 
statistical learning (Saffran, Aslin, & Newport, 1996). This mechanism is thought to divide a nearly 
infinite number of element combinations into a small number of “chunks” (Orban, Fiser, Aslin, & 
Lengyel, 2008). Consistent with statistical leaning, growing evidence from artificial scene and artificial 
grammar learning suggests that information about the visual and auditory environment can be learned 
without feedback through this kind of chunking mechanism (Fiser & Aslin, 2001; Lany & Gomez, 2008; 
Saffran, Johnson, Aslin, & Newport, 1999; Knowlton & Squire, 1996).  
 
While there is evidence that statistical learning occurs, evidence that it facilitates later learning is 
incomplete. Some role for statistical learning has been demonstrated in the speech domain (Graf Estes, 
Evans, Alibali, & Saffran, 2007). Here, we investigated whether statistical learning of correlations 
between different dimensions1 of visual objects facilitates later learning to categorize those objects with 
feedback.  
 
Conceivably, exposure could produce familiarity with object features, increasing their perceptual 
differentiation (e.g., Gibson & Gibson, 1955; Goldstone & Steyvers, 2001). Alternatively, correlations 
between dimensions of objects could be learned, creating meaningful “chunks” of visual features. For 
example, Fiser and Aslin (2001) showed that participants formed such chunks after unsupervised 
exposure to artificial “scenes” in which several complex shapes were arranged on a grid. Participants 
were able to learn “combos” of shapes whose relative positions in the grid were correlated during pre-
exposure. They used the term statistical learning to describe this phenomenon and this is the terminology 
we continue to use here. A Bayesian model of statistical learning that aims to explain this chunk 
formation has been proposed by Orban et al. (2008).   
 
Critically, we are not asking whether people incidentally learn object categories from exposure: Prior 
work suggests they can (Ashby, Queller, & Berretty, 1999; Clapper & Bower, 1994; Knowlton & 
Squire, 1993; Palmeri & Flanery, 2002; Wills, Suret, & McLaren, 2004). For example, in some of this 
previous work, participants are first exposed to objects that belong to one or more structured categories. 
After exposure, they are asked to perform tasks like deciding which objects in a test set belong to the 
exposed category or not, or they are asked to discriminate objects in terms of whether they belong in the 
same category or not based on the prior exposure. The interest of most of these studies lies in showing 
that categories are formed during pre-exposure. Through some mechanism, participants discover that a 
group of exemplars is similar to each other and dissimilar to another group of exemplars. Clapper and 
Bower (1994), for instance, examined how the order of presentation during pre-exposure is critical for 
eliciting this realization, whereby a new category is spontaneously formed when a group of similar 
exemplars is followed by a dissimilar oddball. Family resemblance and other graded category structures 
are well suited to these types of designs because they allow categorization of new exemplars based on 
similarity to exemplars of the pre-exposed category or categories.  
 
In contrast to the formation of categories at pre-exposure, our concern here is the formation of 
perceptual chunks that can subsequently be used for various purposes, including category learning. 
Prioritized knowledge of such perceptual chunks could facilitate or hinder the solution of whatever 
problem the observer is faced with later. To investigate this issue, we needed to depart from family 
resemblance structures, both at pre-exposure and transfer. Indeed, the collections of pre-exposed objects 
in our experiment have no category structure relevant to what is learned later. Instead, we manipulated 
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the correlational structure of the pre-exposed objects such that pairs of dimensions had values that were 
correlated with each other but not with other correlated dimension pairs.  
 
Statistical learning could allow subjects to learn which object dimensions “go together” and which do 
not. During category learning, participants might then preferentially make use of conjunctions of 
dimensions that went together during pre-exposure. In order to test this hypothesis, we needed a 
category structure in which some combinations of dimensions had to be attended while others had to be 
ignored. Furthermore we wanted a structure that was complex enough so that participants would be 
discouraged from strategies like forming simple single-dimension rules and remembering exceptions 
(Nosofsky, Palmeri, & McKinley, 1994). An “exclusive or” rule applying to some feature combinations 
but not others fitted these requirements and allowed us to test the hypothesis of chunk formation at pre-
exposure. Pre-exposure would facilitate category learning if the categorization rule required attention to 
previously correlated dimensions and would be detrimental if the categorization rule required attention 
to previously uncorrelated dimensions.  
 
In this experiment, we manipulated the correlational structure of the objects at pre-exposure. Participants 
in all conditions then learned to categorize a set of new objects with feedback; specifically, there were 
two equal-size categories that could be distinguished based on an “exclusive or” rule applied to some 
combinations of two object dimensions (diagnostic combinations), but not other dimensions (non-
diagnostic combinations). Critically, the statistical structure of the categorized objects was the same in 
all conditions for all participants. All that differed was the kind of pre-exposure they received.  
 
2. Materials and Methods 

 

 
 

Figure 1. Examples of the objects. Full 
descriptions of the stimuli are shown in 
the Appendix. 
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2.1 Participants 
A total of 137 Vanderbilt undergraduates and members of the general community participated; Nine 
were dropped due to technical errors, leaving 128 participants, 79 female, with an average age of 20.4 
years and 14.0 years of education.  
 
2.2. Stimuli 
 
2.2.1. Pre-exposure objects 
Novel objects were artificial humanoids (Figure 1), spanning ≈5.5° of visual angle. There were six 
dimensions (antenna, head, wings, body, arms, and legs) with five possible feature values for each one 
(antenna and legs had only four values as these dimensions were not manipulated experimentally, see 
below).  
 
Participants were randomly assigned to one of four groups. Three groups were pre-exposed to 
humanoids, while the fourth group was a no-pre-exposure control. The three pre-exposure object sets 
varied in the kinds of correlations they contained across dimensions, but were perfectly matched in the 
frequency with which individual features occurred (abstract dimensional and feature structures for the 
pre-exposure conditions are included in the appendices). Of the six dimensions, four (head, wings, body, 
and arms) were manipulated experimentally and two (antennae and legs) were used as individuating 
features (specifically, antennae and legs were uncorrelated with each other and with any of the other 
four dimensions and had identical statistical properties in all conditions).  
 
In the Correlated(Diagnostic) condition, the values of head and body were perfectly correlated and the 
values of wings and arms were perfectly correlated; this Correlated condition is deemed “Diagnostic” 
because during later category learning, the conjoint values of either the head and body or of the wings 
and arms were sufficient for perfect categorization. In the Correlated(Non-Diagnostic) condition, the 
values of head and wings were perfectly correlated and the values of body and arms were perfectly 
correlated; this Correlated condition is deemed “Non-Diagnostic” because the conjoint values of either 
the head and wings or the body and arms were insufficient for perfect categorization. In fact, this is an 
understatement: using the conjunctions of head and wings or body and arms in a categorization strategy 
would result in chance performance during category learning. There was a total of 32 objects in each 
Correlated stimulus set. These objects were randomly sampled during pre-exposure phase. All five 
values of each dimension were used in constructing the correlated pre-exposure stimulus sets. 
 
In the Uncorrelated condition the pre-exposed objects had randomly assigned feature values along each 
of the four experimentally manipulated dimensions; all five values of each dimension were sampled. 
 
Finally, the No-Pre-Exposure group saw no humanoid stimuli during pre-exposure; instead, they were 
exposed to a set of cartoon fish that had been used in other experiments. 
 
2.2.2. Category learning objects 
All four groups were trained to categorize the same 16 humanoids. Head, wings, body, and arms each 
varied across two equally frequent values, while antennae and legs varied across four values. While all 
five dimension values occurred during pre-exposure, none of the training exemplars had been 
experienced during pre-exposure. The humanoid objects could be categorized with perfect accuracy 
using either of two possible two-dimensional “exclusive or” rules requiring attention to two dimensions, 
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for instance head and body. An object might always be in category A if it had either a furry head and 
square body or a bald head and a round body but never in category A if it had a furry head and a round 
body or a bald head and a square body. A rule with the same abstract structure could also be applied to 
the wing and arm dimensions. Critically, successful combinations used to categorize stimuli were head 
and body or wings and arms; these were the dimensions correlated in the Correlated(Diagnostic) 
condition of pre-exposure. Two combinations that could not be used to categorize the stimuli were head 
and wings or body and arms; these were the dimensions correlated in the Correlated(non-Diagnostic) 
conditions of pre-exposure.  
 
2.3. Procedure 
During pre-exposure, participants viewed a sequence of 480 pre-exposure humanoids. The 
Correlated(Non-Diagnostic) and Correlated(Diagnostic) groups each saw 15 random sequences of the 32 
pre-exposure humanoids constructed for their respective conditions (480 trials). The Uncorrelated group 
saw a random set of 480 humanoids. The No-Pre-Exposure group saw a set if imaginary fish randomly 
selected over the 480 trials.  
 
During pre-exposure, we asked participants to press the space bar whenever a stimulus was displayed 
off-center (12.5% of trials). Before pre-exposure, participants viewed a series of examples of fish stimuli 
(the same stimuli viewed in the No-Pre-Exposure condition) that were either on-center or off-center, 
labeled so that participants could understand how far off-center the stimuli had to be. Pre-exposure 
stimulus duration and ISI were 700ms.  
 
Following pre-exposure, participants in all four conditions were trained to categorize with feedback the 
same set of sixteen stimuli, presented randomly over 35 blocks (560 trials). Each stimulus was presented 
for 1sec. “Mog” or “Nib” feedback, shown for 1sec, followed 300ms after the response or 300ms after 
the disappearance of the object.  
 
3. Results 
We analyzed accuracy and reaction time during category learning as a function of learning epoch (7 
training epochs). Not surprisingly, accuracy increased and reaction time decreased over the course of 
learning (accuracy: F(6,744)=68.71, MSe=2.2, p <.0001; RT: F(6,744)=23.1, MSe=1.4, p<.0001). 
However, given the difficulty of the exclusive-or rule, accuracy in the last two learning epochs was 
bimodally distributed, with some participants near ceiling while others remained near chance; this 
occurred in all four conditions. Therefore, we divided our participants into high-performing and low-
performing groups based on a median split of accuracy during the last two epochs of category learning 
(epochs 6 and 7). Accuracy and mean correct response time in epochs 1-5 were then subjected to a 
between-subjects ANOVA with factors of Pre-exposure condition and Performance Group. This ensured 
that the data analyzed in the ANOVA differed from the data used to select groups, while limiting 
potential ceiling effects. Accuracy in high performers during epochs 1-5 was indeed superior to accuracy 
in lower performers (F(1,120)=132.0, p<.0001). 
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Figure 2 shows that, in the High Performers Group only, accuracy was higher for the Uncorrelated and 
Correlated(Diagnostic) pre-exposure conditions than the Correlated(non-Diagnostic) and No-Pre-
exposure conditions (main effect: F(3,120)=5.06, MSe=.010, p<.005; Pre-exposure x Performance 
Group interaction: F(3,120)=3.52, MSe=.010, p<.05). Planned comparisons confirmed that, among High 
Performers, those in the Correlated(Diagnostic) and Uncorrelated conditions had higher accuracy than 
those in the Correlated(non-Diagnostic) and No-pre-exposure conditions (ts(30)>2.2, p’s<.05). 
Participants in the Uncorrelated and Correlated(Diagnostic) did not differ from each other, nor did those 
in the No-Pre-Exposure and Correlated(non-Diagnostic) conditions (ts(30)<1). In contrast, there were no 
effects of Pre-exposure among the Low Performers groups (Fs<1).  
 
While correct response time was longer for high than low performers (F(1,120)=10.8, MSe=.101, 
p<.005), response time differed little across pre-exposure conditions and Pre-exposure did not interact 
with Performance Group (Fs<1). 
 
4. Discussion 
Our results suggest an effect of statistical learning during pre-exposure on later category learning. We 
hypothesize that if two dimensions have correlated values during pre-exposure, they might form a 
perceptual “chunk” that can be attended during category learning. This in turn could lead participants to 
test hypotheses about jointly attended features, speeding learning in the Correlated(Diagnostic) 
condition and slowing learning in the Correlated(Non-Diagnostic) condition. Based solely on the 
superior accuracy in the Correlated(Diagnostic) condition relative to the Correlated(non-Diagnostic) 
condition, statistical learning might have facilitated category learning, impaired category learning, or 
both. However, comparison to the Uncorrelated and No-Pre-Exposure conditions allows a more nuanced 
interpretation, whereby statistical learning may actually impair category learning by directing attention 
to counter-productive feature combinations. 
 

Figure 2.  Mean accuracy and reaction time for Experiment 2, plotted separately for high 
and low performers. Error Bars are between-subjects 95% confidence intervals.  
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First, superior performance of the Uncorrelated group over the No-Pre-Exposure group suggests an 
effect of feature familiarity. Because participants in the Uncorrelated group were pre-exposed to 
exemplars with randomly combined features, improvement cannot be accounted for by learning to 
jointly attend to dimensions with correlated values. Two possible reasons for this effect fall under the 
rubric of feature familiarity: One possibility is that Uncorrelated pre-exposure increased perceptual 
fluency with the stimulus features (e.g., Conroy, Hopkins, & Squire, 2005), providing an advantage in 
encoding and remembering the dimension values. A second possibility is that this group acquired 
knowledge about the dimensional structure of the stimuli, and was thereby better able to test hypotheses 
or allocate attention more efficiently. For instance, they could have learned that all objects have the 
same number of parts in the same configuration, that hands do not constitute dimensions that are 
separate from arms, etc. Thus, participants in the Uncorrelated group might have had a head start 
relative to the No-pre-exposure group in knowing what the stimulus dimensions were and could thus test 
relevant hypotheses more quickly.  
 
But feature familiarity cannot be the whole story. If it was, then performance in the Correlated(non-
Diagnostic) pre-exposure condition should have been the same as the Uncorrelated condition, but it was 
not. Instead, it appears that statistical learning in the Correlated(non-Diagnostic) condition impaired 
category learning. Accuracy in the Correlated(non-Diagnostic) condition was no better than the No-Pre-
Exposure condition, suggesting that the benefit of familiarity was counter-acted by some other variable 
– presumably statistical learning.  
 
In our case, statistical learning seemed to impose a cost on later category learning, but it did not seem to 
provide a clear benefit. Performance in the Correlated(Diagnostic) condition was no better than the 
Uncorrelated baseline. This finding in itself highlights the importance of using both no-exposure 
controls and uncorrelated controls in future studies of possible transfer from statistical learning onto 
later explicit learning. Nevertheless, such a null result is not straightforward to explain. A lack of power 
or some complicated interaction of feature correlation and of a priori salience of particular dimensions 
could potentially explain this finding. Another possibility, however, is that something about the 
Uncorrelated condition was highly effective in boosting performance, such that it was more than a mere 
feature familiarity baseline. One possible explanation comes from theories of latent inhibition, which 
posit that correlated features are actually less salient than uncorrelated features (McLaren, Kaye, & 
Mackintosh, 1989; McLaren & Macintosh, 2000). Greater release from latent inhibition in the 
Uncorrelated relative to the Correlated conditions might have caused an extra boost in performance in 
the Uncorrelated condition; this possibility demands future research.  
 
In closing, we investigated the effect of pre-exposure on subsequent category learning, when the pre-
exposure phase contained no information about the categories to be later learned. We focused on three 
possible effects of pre-exposure: perceptual fluency with features, acquisition of dimensional structure, 
and formation of perceptual “chunks” as potential influences. Our results demonstrate that pre-exposure 
to objects can facilitate or impair category learning. The inferior performance of the Correlated(non-
Diagnostic) group relative to the Correlated(Diagnostic) and Uncorrelated groups demonstrates that 
participants encoded relationships between object features during pre-exposure. Category learning can 
lead to the creation of new object features from combinations of subfeatures (Goldstone, 2000; Schyns 
& Rodet, 1997). Mere exposure can facilitate the recognition of repeated spatial configurations of novel 
shapes embedded in “artificial scenes” (Fiser & Aslin, 2001). Like in Fiser and Aslin, in this study, 
perceptual chunks were formed during pre-exposure, not during category learning. Also like Fiser and 
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Aslin, in our study, the correlated features were clearly distinct, somewhat spatially separated parts and 
their combination did not form gestalt wholes, unlike the features used in the studies by Goldstone 
(2000) and Schyns et al. (1997). So it may be more prudent to interpret our findings in terms of joint 
attention to learned conjunctions rather than in terms of the formation of novel single features through 
“unitization”. 
 
Pre-exposure facilitated category learning in both the Uncorrelated and Correlated(Diagnostic) 
conditions. The advantage of the Uncorrelated condition over the No-Pre-Exposure condition 
demonstrates that pre-exposure to the stimulus features themselves improved category learning, possibly 
through familiarization with the basic constraints of the stimulus set and learning the dimensional 
structure of the stimuli. More puzzling is the failure of the Correlated(Diagnostic) condition to cause 
better categorization performance than the Uncorrelated condition. This might have been caused by lack 
of salience of the particular correlated feature conjunctions in the Correlated(Diagnostic) condition or by 
greater latent inhibition in the Correlated than the Uncorrelated conditions. 
 
Clearly, there remains much to learn about the specific mechanisms, perhaps many in kind, that allow 
unsupervised learning during exposure to objects to influence later supervised category learning. 
Therein lie interesting theoretical challenges and promising avenues in the design of more effective 
training programs for category learning. 
 
5. Appendix 
  
The tables below show the detailed abstract structure of the stimuli used in the experiment.  
 
In each of the tables, columns represent a different stimulus dimension and rows represent different 
stimuli. Each number corresponds to a feature value for a given stimulus dimension – for instance, “1” 
in the arms column might refer to hairy arms and “2” might refer to tentacle arms. As appropriate, in 
some tables, the final column shows the category of the stimulus when the stimuli in the table are used 
within the category learning phase of that experiment. 
 
Note that the particular features that corresponded to particular numbers in the table were rotated across 
participants to ensure that results were not restricted to particular combinations of features. A total of 
four feature-to-number mappings were yoked across conditions so that participants in all conditions 
were exposed to the same feature-to-number mappings.  
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Notes 
 

1. Here, dimension refers to a component of an object that can vary systematically (e.g., the shape of the 
body), whereas feature refers to a particular value along a dimension (e.g., a square body).  
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