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Abstract

Background: Experience can alter how objects are represented in the visual cortex. But experience can take different forms.
It is unknown whether the kind of visual experience systematically alters the nature of visual cortical object representations.

Methodology/Principal Findings: We take advantage of different training regimens found to produce qualitatively different
types of perceptual expertise behaviorally in order to contrast the neural changes that follow different kinds of visual
experience with the same objects. Two groups of participants went through training regimens that required either
subordinate-level individuation or basic-level categorization of a set of novel, artificial objects, called ‘‘Ziggerins’’. fMRI
activity of a region in the right fusiform gyrus increased after individuation training and was correlated with the magnitude
of configural processing of the Ziggerins observed behaviorally. In contrast, categorization training caused distributed
changes, with increased activity in the medial portion of the ventral occipito-temporal cortex relative to more lateral areas.

Conclusions/Significance: Our results demonstrate that the kind of experience with a category of objects can systematically
influence how those objects are represented in visual cortex. The demands of prior learning experience therefore appear to
be one factor determining the organization of activity patterns in visual cortex.

Citation: Wong AC-N, Palmeri TJ, Rogers BP, Gore JC, Gauthier I (2009) Beyond Shape: How You Learn about Objects Affects How They Are Represented in Visual
Cortex. PLoS ONE 4(12): e8405. doi:10.1371/journal.pone.0008405

Editor: Jan Lauwereyns, Victoria University of Wellington, New Zealand

Received August 20, 2009; Accepted November 26, 2009; Published December 22, 2009

Copyright: � 2009 Wong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by a grant from the James S. McDonnell Foundation and the Temporal Dynamics of Learning Center (SBE-0542013), and
the NSF Science of Learning Center, to I.G. and T.J.P, and the National Institutes of Health and the National Eye Institute (EY13441) to I.G. The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: alanwong@psy.cuhk.edu.hk

Introduction

How does experience with objects such as dogs, roses or cars

change their representation in visual cortex? Practice with objects

is accompanied by increased activity [1–5] and increased

sensitivity in visual areas to subtle differences in shape [6,7]. But

our experience with objects can take many different forms: We can

be passively exposed to objects, learn to categorize them into

different groups, learn unique names or other meaningful

information about them, or learn to discriminate between them

without ever naming them. Do visual representations depend on

the kind of experience we have had with objects, or does any kind

of experience lead to similar cortical representations of object

shapes, perhaps only quantitatively modulated by frequency of

exposure and amount of visual attention? To date, studies have

mainly demonstrated that experience matters. Relatively few

studies have shown systematically that the kind of experience we

have with objects matters for determining the nature of visual

cortical representations.

Functional brain imaging studies manipulating object category

have revealed neural activity patterns in the ventral occipito-

temporal cortex (VOT) specific for familiar visual categories. Some

categories (e.g., faces, body parts, places) display strong selectivity

that is clustered in one or a few local areas [8–13]; but for the

majority of categories, selectivity is weaker and emerges from

pooling the responses distributed over larger expanses of visual

cortex [14]. Some categories, such as letters, show both clustered

and distributed activity [15,16].

Such category-selective activity patterns imply a number of

candidate factors affecting object representations in visual cortex.

When perception of animals and tools, faces and houses, or letters

and digits are contrasted, differences can be attributed to a host of

confounded factors, like differences in shape, name, meaning,

frequency, and history of processing. One possibility is that object

processing areas in visual cortex contain a large-scale topograph-

ical representation based on object shape [17] that is not

qualitatively modified by experience [18–21] but only quantita-

tively fine-tuned. However, perceptual expertise studies with

categories as diverse as letters [10], musical notation [22], cars

and birds [23] suggest that experience plays an important role in

determining the different neural representations observed in

various domains.

We investigated whether the kind of experience with an object

category significantly determines how objects are represented in

visual cortex, controlling for object shape. Specifically, experience

with discrimination at different levels of abstraction was examined.

A number of studies have looked at the neural correlates of object

classification at different levels with mixed results. For example,

Gauthier et al. [24] used a label-picture matching task and

found within a wide range of regions in VOT higher activity for
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subordinate- than basic-level judgment (e.g., matching an image to

the label ‘‘robin’’ vs. ‘‘bird’’). Op de Beeck et al. [25] asked

participants to match objects in a basic-level category or at the

exemplar level and found no activity difference in VOT. Tyler

et al. [26] asked participants to silently name a number of common

objects and found that the anterior regions of the inferior temporal

cortex were more active during basic-level naming (e.g.,

‘‘monkey’’) and the posterior regions were more active during

domain-level naming (‘‘living thing’’). It can be difficult to

specifically pinpoint the cause of such discrepancies in studies

using a range of real-world object categories. Since common

objects are most often categorized at the basic level, a subordinate-

level categorization might impose a more unfamiliar task demand

leading to more brain regions being activated [as in 24]. In

addition, common objects have associated with them numerous

semantic attributes, which may also affect object representations in

the VOT [8]. Depending on the exact object categories used in an

experiment, different results may be obtained due to different

semantic attributes becoming activated. Because of all of these

complications with real-world objects, in order to fully understand

how the kind of experience with objects affects their representa-

tions in visual cortex, we argue it is best to use novel objects that

participants have never seen before.

Surprisingly, while different object shapes and different tasks are

very often contrasted in neuroimaging studies of object recogni-

tion, including those described above, there has been far less effort

in contrasting different kinds of learning experience with objects.

While some work has compared subordinate-level categorization

training with a control training equating for exposure [7,27–29],

the comparison training has typically been very easy and involved

considerably lower degrees of learning. Thus, any differences

observed in neural activity could be caused by either different

levels of attention or different degrees of expertise.

Here, we tested how different kinds of learning experience

influence visual cortical representations by contrasting two difficult

training protocols that have been shown to result in qualitatively

different kinds of object learning [30]. The same set of objects was

learned in two different ways by two groups of participants. By

doing so, we manipulate learning history for those objects, holding

shape constant. Before and after learning, participants were tested

in the same way. Brain activity for both groups was measured after

learning under the same testing conditions.

Using the same set of novel artificial objects (called Ziggerins),

we modeled our two training regimens after the sort of experience

thought to underlie face individuation and letter categorization,

respectively (see Fig. 1). Individuation training focused on rapid

identification of objects that share a common part structure [31].

Categorization training required participants to rapidly distinguish

objects with different structures in arrays where objects shared the

same style, much like the common size, orientation, and font of

different letters on a page [32]. These two training regimens

resulted in qualitatively different behavioral changes [30]:

Individuation training increased holistic processing selectively for

Ziggerins in the trained configuration and speeded up individu-

ation of the Ziggerins. In contrast, after training, the categoriza-

tion–training group was faster than the individuation-training

group in basic-level recognition of Ziggerins either appearing in

isolation or three at a time.

Using functional magnetic resonance imaging (fMRI), we now

ask whether the two training regimens also produce different

patterns of changes in visual cortex (Fig. 2). The testing tasks

within the scanner were the same for both groups and involved

both subordinate-level identification and basic-level categoriza-

tion, to allow each training regimen to reveal their influences.

Results

Two groups of participants learned to either individuate or

categorize a set of novel objects (Ziggerins) in ten 1-hour sessions.

Functional magnetic resonance imaging (fMRI) responses to the

Ziggerins were measured before and after training. During the

fMRI sessions participants performed either within- or between-

category discriminations (see Methods). Behavioral performance

within the scanner was generally better for all participants after

training, with no significant difference between the two training

groups (see Supporting Information S1).

For fMRI, we computed the training effects by subtracting the

activity for Ziggerins (relative to object control) before training

from that after training. A positive (or negative) training effect

would thus index an increase (or decrease) in brain activity after

training. As the individuation and categorization training were

inspired by our experience in face and letter recognition

respectively, we asked if the two training regimens would

selectively increase the activity in face- and letter selective regions.

We also considered changes more broadly in the ventral occipito-

temporal cortex.

Face- and Letter-Selective Regions
Using data from the localizer scans, we identified at the group

level a region in the right fusiform gyrus with higher activity for

faces than letters and objects (Talairach coordinates: 40, 244,

218; size = 462 mm3), and a region in the left inferior temporal

gyrus with higher activity for letters than faces and objects

(coordinates: 250, 246, 26; size = 844 mm3). As control regions,

two areas in bilateral parahippocampal cortices were identified

(coordinates: 230, 236 215 (left) and 27, 245, 28 (right);

size = 1000 mm3 for both) that responded more to objects than

faces [33].

The right fusiform region showed increased activity for the

Ziggerins in the individuation group after training (Fig. 3a). A

repeated-measures ANOVA on the training effect with Group

(individuation vs. categorization training) and Task (within- vs.

between-class discrimination) as factors revealed a larger increase

in activity for the individuation-training than the categorization-

training group [F1,16 = 4.93, P = .041]. The training effect in this

region was significant in the individuation-training group for

within-class discrimination [t8 = 2.50, P = .036] but did not reach

significance for between-class discrimination [P = .223]. No

significant training effect was found in the categorization-training

group for either task [ts,1]. The letter- and object-selective

regions showed no significant training effect either (ts,1).

We also observed a correlation between the training effect in

this right fusiform region and the extent to which Ziggerins were

processed configurally after training (Fig. 3b). We previously

reported data from a Ziggerin composite task conducted outside

the scanner in which participants matched half of a Ziggerin image

while trying to ignore the other half [30]. Individuation experts

were less able to ignore an irrelevant part, especially when the

Ziggerins appeared in their trained configuration, i.e., the two

halves were aligned with one another. Here, we found that this

configural effect (see [30] for details) was correlated with the

magnitude of the training effect in the face-selective region across

all participants [Pearson product-moment correlations: within:

r = .70, P,.001; between: r = .63, P = .005]. While the large,

negative configural effects for two participants in the categoriza-

tion-training group (the two leftmost data points in Fig. 3b) were

hard to interpret, the correlations remained significant after the

two data points were discarded [within: r = .53, P = .03; between:

r = .59, P = .02].Participants in the individuation-training group

Experience and Visual Cortex
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tended to have larger configural effects and larger training effects

than participants in the categorization-training group. The

correlations remained high with separate analyses for the

categorization-training [within: r = .82, P = .006; between: r = .49,

P = .185] and individuation-training groups [within: r = .50,

P = .167; between: r = .60, P = .084]. There were no significant

Figure 1. The artificial objects (Ziggerins) and training tasks. (a). The entire Ziggerin set of seventy-two novel objects. The six classes were
shown in separate rows. (b). Individuation training consisted of three tasks: naming, verification, and matching. (c). Categorization training consisted
of the naming and verification tasks, as well as a matrix scanning task with an example trial shown.
doi:10.1371/journal.pone.0008405.g001

Figure 2. An example scan of the fMRI pre- and post-training scans. In the within-class discrimination condition, each block contained only
Ziggerins within the same class, thus requiring within-class/subordinate-level discrimination. In the between-class discrimination condition, each
block contained Ziggerins from different classes, thus requiring between-class/basic-level discrimination. The control blocks contained familiar
objects from different categories.
doi:10.1371/journal.pone.0008405.g002
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correlations of this task with activity in letter- and object-selective

regions.

Caution should be taken in interpreting the significant training

effects in the right fusiform region defined at the group level as

evidence for the development of face-like selectivity for Ziggerins.

For the face-selective fusiform region localized in individual

participants (i.e., the right fusiform face area, or rFFA), training

effect did not reach significance (t,1) in the individuation-training

group and had a weak correlation with configural processing of

Ziggerins [within: r = .33, P = .177; between: r = .43, P = .073].

Although the face-selective region defined at the group vs.

individual levels overlapped considerably (coordinates: 40, 244,

218 vs. 38.9, 243.4, 214.6; see Supporting Information S1), the

discrepancy of results reveals that the training effect associated

with individuation training and configural processing is not

strongest in the most face-selective voxels for each individual.

Instead, the focus of the training effect occurred in voxels

neighboring and overlapping to some extent with each partici-

pant’s rFFA, without any systematic spatial relationship between

the two. The individually defined letter- and object-selective

regions did not show any significant training effect or correlation

with configural processing.

Ventral Occipito-Temporal Cortex
Guided by the visual activations during the localizer scans, we

localized a set of 24 ROIs positioned along VOT [15,34]. There

was a distributed pattern of training-induced changes associated

only with categorization training, with increased activity in the

medial regions and decreased activity towards the lateral regions

(Fig. 4). For instance, for the between-class discrimination

condition at y = 245, categorization training effect was positive

at the medial regions (y = 20 on the right hemisphere and y = 220

on the left hemisphere) and gradually became negative towards the

lateral regions (y = 40, 50 on the right hemisphere and y = 240,

250 on the left hemisphere). To examine this pattern, we

conducted linear trend analyses for the ROIs as a function of their

distance from the midline within each hemisphere at each y-

coordinate (245, 255, 265). For the categorization-training

group, significant linear relationships were observed between

the distance from the midline and the training effect in both

hemispheres, especially for the between-class discrimination

(within: P,.001 at y = 245, right hemisphere, P,.05 at y = 265,

left hemisphere; between: P,.001 at y = 245 and 265, both

hemispheres, P,.01 at y = 255, right hemisphere; P,.05 at

y = 255, left hemisphere). Such linear trends did not occur

systematically for the individuation-training group.

Consistent with the trend analyses, one-sample t-tests (P,.05)

showed that, for the categorization-training group, there were

positive training effects in some medial ROIs [(x,y) = (30,245) and

(20,265) for within-class discrimination] and negative training

effects in lateral ROIs [(x,y) = (40,245), (50,245), (40,255),

(50,255), (250,265), (240,265), (30,265), (40,265), and

(50,265), all for between-class discrimination]. No significant

training effect was found in any of the ROIs for the individuation-

training group. A Group (individuation vs. categorization

training)6x-coordinate (50, 40, 30, 20, 220, 230, 240, 250)

ANOVA also showed a significant Group6x-coordinate interac-

tion for ROIs at y = 245 [within: F7,112 = 2.13, P = .045; between:

F7,112 = 2.22, P = .037]. Further analyses showed that the training

effects were different across the medial and lateral regions only for

the categorization-training group [within: F7,56 = 3.55, P = .003;

between: F7,56 = 4.75, P,.001] but not for the individuation-

training group [within: F7,56,1; between: F7,56 = 1.18, P = .323].

Notably, two ROIs [(x,y) = (40, 245), (50, 245)] close to the

right fusiform region (40, 244, 218) identified in the localizer

scans showed a trend of training effects for the individuation-

training group that did not reach significance (Ps..40). However,

there were significant correlations between the training effects in

these two regions and the configural processing effect measured

behaviorally [for (x,y) = (40, 245), within: r = .59, P,.01; between:

r = .50, P = .03; for (x,y) = (50, 245), within: r = .78, P,.0001;

between: r = .54, P = .01;], similar to that found for the right

fusiform region. Such a correlation did not exist for any other

ROI.

Discussion

Our results show that different kinds of learning experience

about objects causes different kinds of changes in activity within

visual cortex. Learning to individuate Ziggerins increased activity

for Ziggerins in a right fusiform region, with the increase

correlated with configural processing of the Ziggerins measured

outside the scanner [2]. In contrast, learning to categorize

Ziggerins at the basic level resulted in a more distributed pattern

of changes, with increased activity for Ziggerins at the medial parts

of the VOT relative to lateral parts.

Figure 3. Training effects in the group-defined face-selective, right fusiform region (Talairach coordinates: 40, 244, 218). (a). Activity
changes (post minus pre) for Ziggerins during within- and between-class discrimination after individuation vs. categorization training. Error bars
represent the 95% confidence intervals for group differences. (b). Correlations between training-induced activity changes in this right fusiform region
for the Ziggerins and the configural processing effect found for the Ziggerins measured behaviorally.
doi:10.1371/journal.pone.0008405.g003

Experience and Visual Cortex
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Interestingly, the type of testing tasks used in the scanner also

revealed different levels of neural activity depending on the kind of

training the participant received. Specifically, the effects of

individuation training in the right fusiform were more conspicuous

in within-class discrimination while effects of categorization

training in the medial VOT were more conspicuous in between-

class discrimination. This result suggests that patterns of activity in

visual cortex following prolonged training with objects do not

always emerge automatically but depend on the nature of the

testing task. While this contrasts with previous novel object

training studies [e.g., 1] that were able to show neural effects using

a passive viewing task in the scanner, an important caveat is that

earlier work involved significantly more training on a family of

homogenous objects. So it remains open whether significantly

more training with Ziggerins, resulting in higher levels of

automaticity, would result in task-independent engagement of

visual cortex by those objects. That said, one implication of our

results is that future research examining qualitative differences in

neural activity following different training regimens may want to

include testing conditions that favor the transfer from each kind of

training.

The stark contrast in both behavioral and neural measures

following individuation versus categorization training offers

additional support for the process-map hypothesis [35,36].

According to this hypothesis, activity in visual cortex in response

to objects reflects the demands of prior learning conditions. The

VOT contains regions with different pre-existing biases, or

preference for specific types of task demand. With repeated

experience performing particular tasks with an object category

during learning, regions best suited to those tasks may become

automatically engaged by those objects in the future. Certainly, it

is unlikely that one factor would suffice to account for the selective

activity patterns for different object categories. Types of

experience may work in concert with other factors, such as shape

[18,21] or connectivity with regions outside visual cortex [37] to

govern which parts of VOT will be most engaged by a given

category [35,38,39].

Despite the dissociated patterns of neural effects, the two

training regimens did not result in training effects directly within

the face-selective rFFA and the letter-selective region, despite the

fact that they were modeled after face and letter processing

respectively. This could be due to the insufficient amount of

learning experience in this study, or to additional factors that are

required in the formation of face-like and letter-like activity

patterns. Individuation training effects have been obtained near

but not directly within the FFA proper [see 5 for a similar finding].

This could indicate an intermediate level of individuation

expertise. Because of the requirements of our design, participants

learned to individuate objects from six different basic-level classes,

compared to only one class in prior work on individuation training

that recruited the FFA [1] that had the same training duration.

Our participants thus received about 1/6th of the experience with

each category compared to prior work, and of course considerably

less experience than any kind of real-world expertise shown to

recruit the FFA [23,40,41].

Our categorization training, modeled after some aspects of the

experience we have with letters, did not change activity in the

letter-selective area. We should note that there is a high degree of

Figure 4. Training effects for the ventral occipito-temporal regions. The categorization group showed increased activity for the Ziggerins in
the medial regions and decreased activity at the lateral regions after training, as indicated by the significance of the linear trends within each
hemisphere (p,.05, .01, and .001 indicated by one, two, and three asterisks respectively). The individuation group did not show any reliable pattern
of changes. The brain was depicted with a radiological convention (i.e., left hemisphere one the right).
doi:10.1371/journal.pone.0008405.g004
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variability of letter selectivity across individuals and across studies

[10], which raises the bar on the ability to unambiguously detect

letter-like selectivity with novel objects. Furthermore, our relatively

short training regimen, and the smaller number of Ziggerin classes

compared to the number of letters we learn in the real world,

might also weaken the ability to find letter-like selectivity. One

recent training study using pseudoletters showed letter-selective

activity patterns only after training that involved writing but

not typing or only visual experience [42], so combining two-

dimensional letter-like stimuli plus sensorimotor learning may be

key to recreate letter-like neural activity.

One interpretation of our current results is that the medial

object regions were engaged more after categorization training

because of their preference for peripheral, low-resolution repre-

sentations, as compared to the lateral regions that have been tied

more to foveal, high-resolution representations [39]. It remains to

be seen whether the reduced activity at the lateral regions actually

indicates less engagement or changed response tuning. Under-

standing the differential involvement of medial and lateral regions

of visual cortex following training may ultimately require designs

that permit multi-voxel pattern analyses [43], which go beyond

analyzing average response within a region to probing distributed

activity patterns across voxels.

In conclusion, despite using relatively short training regimens,

participants in our studies showed qualitatively different percep-

tual strategies in their behaviors (Wong et al., 2009) and

qualitatively different patterns of neural activity in visual cortex.

Our work demonstrates that the demands of prior learning

experience with a category of objects is one important factor

governing the spatial distribution of neural changes when we

acquire new visual object representations.

Materials and Methods

Participants
Eighteen volunteers participated in two fMRI sessions, one

before and one after training. Nine were in the individuation-

training group (six females, seven right-handed, age M = 22.11,

SD = 1.32) and nine in the categorization-training group (five

females, six right-handed, age M = 21.22, SD = 1.22). They

received $12 for each behavioral session and $25 for each fMRI

session. These subjects were randomly selected from those tested

behaviorally by Wong et al. [30]. All had normal or corrected

vision and reported no history of neurological disorders.

Stimuli and Material
Seventy-two novel objects (Ziggerins in Fig. 1a) were created

using Carrara 5 software (DAZ Productions, Inc., http://www.

daz3d.com). There were six classes of Ziggerins, each defined by a

unique part structure. Within each class, there were 12 styles, each

defined by variations in the parts’ cross-sectional shape, size, and

aspect ratio. The same style variations applied across all six classes.

This combination of class and style is analogous to six different

letters in 12 different fonts. Each participant was trained on a

subset of 36 Ziggerins (6 styles; selection randomized across

participants), with the remaining Ziggerins reserved for pre- and

post-training scans.

For fMRI scans, 72 Ziggerins (36 in trained set and 36 in

transfer set) and 36 familiar object images (in six classes: beds,

boats, cars, chairs, lamps, and teapots) were used. Images spanned

a visual angle of 3.8u during training and 4u during scanning. In

separate localizer scans, 144 grayscale images including 36 faces

(half female), 36 familiar objects (those not used in the Ziggerin

scans), 36 Roman letters (all except c, i, j, l, o, v, x, and z; in two

fonts), and 36 pseudoletters (formed by rearranging the strokes of

each Roman letter) were used.

All training and testing was conducted on Mac computers using

MATLABTM (MathWorks, Natick MA) with the Psychophysics

Toolbox extension [44,45].

Training
Training occurred over ten one-hour sessions between the two

fMRI scans. Participants in the individuation-training group learned

individual names (two-syllable nonsense words) of Ziggerins in

three tasks: naming, verification, and matching (Fig. 1b). In

naming, participants entered the first letter of the name of the

Ziggerin shown. In verification, participants verified if a name

matched with a Ziggerin. In matching, participants judged which

one of two Ziggerins matched a name.

Participants in the categorization-training group learned to

recognize the Ziggerins by naming at the class level and by

rapidly categorizing Ziggerins in an array of other Ziggerins of the

same style. Learning proceeded through three tasks: naming,

verification, and matrix scanning. The naming and verification

tasks were similar to those for individuation training, but used class

names instead of individual names. In matrix-scanning (Fig. 1c),

participants performed a guided visual search in a matrix of 40

Ziggerins. The training procedures and behavioral training effects

are detailed in Wong et al. [30].

Pre- and Post-Training fMRI Scans
Each participant underwent an fMRI session before and after

training. There were six Ziggerin scans in both pre- and post-

training sessions and three localizer scans only in the post-training

session. A block design was used with different types of stimuli

presented in separate blocks. Participants performed a one-back

task, pressing a button with their right index finger only when two

identical images appeared consecutively. Only 1/12th of the trials

required a response. Each trial began with a blank for 275 ms

followed by the stimulus for 725 ms. Presentation of stimuli was

randomized within blocks, and the presentation of blocks was

counterbalanced across scans and participants.

In each localizer scan, each of the four conditions (faces, objects,

letters, pseudoletters) appeared in four blocks of 16 seconds. Eight-

second fixations were inserted after each cycle of the four

conditions. In each Ziggerin scan, each of the three conditions

appeared in six blocks of 12 seconds (Fig. 2). In the within-class

discrimination condition, each block contained only Ziggerins

within a single class, thus requiring subordinate-level discrimina-

tion to perform the one-back task. In the between-class condition,

each block contained Ziggerins across different classes, thus

requiring basic-level discrimination. In the object control condi-

tion, each block contained familiar objects from different

categories. Neighboring blocks were separated by 6 seconds of

fixation. Three scans were devoted to trained Ziggerins and three

scans were devoted to new transfer Ziggerins.

Imaging Parameters and Analyses
Imaging was performed using a 3-T Philips Intera Achieva MRI

scanner and a gradient-echo echo-planar imaging sequence

sensitive to brain oxygen-level dependent (BOLD) contrast (34

contiguous axial slices, 36363 mm voxel size; TR = 2 sec).

High-resolution T1-weighted anatomical volumes were acquired

using a 3-D Turbo Field Echo (TFE) acquisition (170 contiguous

axial slices, 16161 mm voxel size, TR = 8.9 ms). Data analyses,

performed with Brain VoyagerTM (www.brainvoyager.com), includ-

ed 3D motion correction, temporal filtering (3 cycles/scan high-

pass), spatial smoothing (6-mm FWHM Gaussian), and multi-study

Experience and Visual Cortex
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GLM (general linear model). Within each participant, all functional

images in the pre- and post-training scans were co-registered to the

anatomical images obtained during the pre-training scans.

Data from the localizer scans were used to identify regions

selective for faces, letters, and objects. At the group level,

activations for different conditions were compared using random

effects analyses with a threshold of p,.001 (uncorrected). At the

individual level, the same conditions were compared using fixed

effects analyses with a threshold of p(FDR),.05. A set of 24 ROIs

was defined along a large portion of VOT activated by all

conditions (faces, letters, objects, pseudoletters) compared with

fixation baseline. These were 10610615-mm ROIs situated at

different points along the anterior-posterior axis (y-coordi-

nate = 245, 255, or 265) and the medial-lateral axis (x-

coordinate = 220, 230, 240, or 250 on the left and 20, 30,

40, or 50 on the right). The location and extent of these ROIs

along the z-axis was adjusted for each participant to ensure the

best coverage of ventral cortex. Activation in each ROI was

calculated only for voxels falling on the gray matter.

For Ziggerin scans, training effects in functional and anatomical

ROIs were calculated by averaging activity for the fourth volume

onwards in each block for Ziggerins relative to the Object control

during the post- vs. pre-training scan. No systematic differences

were found between trained and transfer scans in different analyses

so they were collapsed in the report of results.

Supporting Information

Supporting Information S1

Found at: doi:10.1371/journal.pone.0008405.s001 (0.33 MB

DOC)
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