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Abstract

■ Are face and object recognition abilities independent?
Although it is commonly believed that they are, Gauthier
et al. [Gauthier, I., McGugin, R. W., Richler, J. J., Herzmann,
G., Speegle, M., & VanGulick, A. E. Experience moderates over-
lap between object and face recognition, suggesting a common
ability. Journal of Vision, 14, 7, 2014] recently showed that
these abilities become more correlated as experience with non-
face categories increases. They argued that there is a single
underlying visual ability, v, that is expressed in performance
with both face and nonface categories as experience grows.
Using the Cambridge Face Memory Test and the Vanderbilt
Expertise Test, they showed that the shared variance between
Cambridge Face Memory Test and Vanderbilt Expertise Test
performance increases monotonically as experience increases.
Here, we address why a shared resource across different visual
domains does not lead to competition and to an inverse cor-
relation in abilities? We explain this conundrum using our neuro-
computational model of face and object processing [“TheModel”,
TM, Cottrell, G. W., & Hsiao, J. H. Neurocomputational models of
face processing. In A. J. Calder, G. Rhodes, M. Johnson, & J. Haxby
(Eds.), The Oxford handbook of face perception. Oxford, UK:
Oxford University Press, 2011]. We model the domain general

ability v as the available computational resources (number of
hidden units) in the mapping from input to label and experience
as the frequency of individual exemplars in an object category
appearing during network training. Our results show that, as in
the behavioral data, the correlation between subordinate level
face and object recognition accuracy increases as experience
grows. We suggest that different domains do not compete for
resources because the relevant features are shared between faces
and objects. The essential power of experience is to generate a
“spreading transform” for faces (separating them in represen-
tational space) that generalizes to objects that must be indi-
viduated. Interestingly, when the task of the network is basic
level categorization, no increase in the correlation between
domains is observed. Hence, our model predicts that it is the
type of experience that matters and that the source of the
correlation is in the fusiform face area, rather than in cortical
areas that subserve basic level categorization. This result is con-
sistent with our previous modeling elucidating why the FFA is
recruited for novel domains of expertise [Tong, M. H., Joyce,
C. A., & Cottrell, G. W. Why is the fusiform face area recruited
for novel categories of expertise? A neurocomputational inves-
tigation. Brain Research, 1202, 14–24, 2008]. ■

INTRODUCTION

Understanding how visual object recognition is achieved
in the human visual cortex has been an important goal in
various disciplines, such as neuroscience, neurophysi-
ology, psychology, and computer science. Among all
object classes, because of their social importance, faces
have been studied most extensively, especially since the
fusiform face area (FFA) was discovered (Kanwisher,
McDermott, & Chun, 1997; Sergent, Ohta, & MacDonald,
1992). Some research suggests that the FFA is a domain-
specific “module” processing only faces (Grill-Spector,
Knouf, &Kanwisher, 2004; Kanwisher et al., 1997;McCarthy,
Puce, Gore, & Allison, 1997); however, the FFA responds
to nonface object categories of expertise, including birds,
cars (McGugin, Van Gulick, Tamber-Rosenau, Ross, &
Gauthier, 2014; Xu, 2005; Gauthier, Skudlarski, Gore, &
Anderson, 2000), chessboards (Bilalić, Langner, Ulrich,

&Grodd, 2011), and even artificial objects when participants
are sufficiently trained in the laboratory (Gauthier, Tarr,
Anderson, Skudlarski, & Gore, 1999). High-resolution fMRI
in the FFA and neurophysiology in macaque’s brain reveal
the existence of highly selective face areas within the FFA
or its likely homologue in monkeys, but no reliable selec-
tivity for nonface objects (Grill-Spector, Sayres, & Ress,
2006; Tsao, Freiwald, Tootell, & Livingstone, 2006). How-
ever, when behavioral expertise is taken into consideration,
more recent work found a reliable correlation between
behavioral car expertise and the response to cars in the
FFA, which remains reliable even in the most face-selective
voxels in this region (McGugin, Newton, Gore, & Gauthier,
2014; McGugin, Gatenby, Gore, & Gauthier, 2012). They
suggest that experience individuating members of a cate-
gory may be sufficient to create this activation.
A more novel approach to study the relationship be-

tween face and object recognition is that of individual dif-
ferences in behavioral performance. With the development
of the Cambridge Face Memory Test (CFMT; Duchaine1University of California, San Diego, 2Vanderbilt University
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& Nakayama, 2006), reliable individual differences in
face recognition abilities have been characterized in the
normal population. Using a classical twin study design,
Wilmer et al. (2010) provided evidence that face rec-
ognition ability is highly heritable. These authors also
reported that face recognition ability (CFMT scores) shared
very little variance (6.7%) with a test of visual memory for
abstract art. In other work, performance on the Cambridge
Car Memory Test was found to share only 13.6% of the
variance with the CFMT, although the two tests are very
similar in format (Dennett et al., 2011). These results sug-
gested that the ability to recognize faces has very little to
do with the ability to recognize nonface objects.
Gauthier et al. (2014) challenged this conclusion by

gathering evidence for the following hypothesis: Face
and object recognition share a domain-general visual abil-
ity, v, for discriminating visually similar objects, and this
ability will only be expressed in performance when an in-
dividual has sufficient experience, E, for a given category.
In brief, Performancecat ∝ v ⋅ Ecat, where the subscript
denotes a particular object category. The authors as-
sumed that, for faces, E is generally saturated and makes
little contribution to performance (as on the CFMT for
instance). For objects, however, they expected E to vary
much more across individuals, and as a result, perfor-
mance should not be as good a measure of v. However,
because they conceived of v as the ability that allows
people to learn from experience with a category, they
predicted that v would be expressed most directly in
performance with objects in those people with the most
experience. To test this hypothesis, the authors collected
three measures from 256 participants: (1) performance
on the CFMT, (2) performance with eight nonface cate-
gories on the Vanderbilt Expertise Test (VET; McGugin,
Richler, Herzmann, Speegle, & Gauthier, 2012), and (3) a
self-rating of experience with faces and the eight VET ob-
ject categories (O-EXP, 1–9).
For the CFMT, participants studied six target faces and

finished an 18-trial learning phase. They were then tested
with 30 three-alternative forced-choice (3AFC) test dis-
plays to determine which faces were among the studied
faces. They then studied the target faces again and were
tested over 24 test trials, where the stimuli were pre-
sented in Gaussian noise. For the VET, participants stud-
ied six target exemplars and then performed 12 3AFC
training trials with feedback. Finally, they studied the
six exemplars again and performed 36 3AFC (without
feedback). In these trials, new exemplars from the target
categories were used to test whether their learning gen-
eralized to new objects within the category.
Participants were divided into six groups based on their

level of reported experience with all VET object catego-
ries. According to their hypothesis, if the common visual
ability v is expressed through experience, then their per-
formance on the VET (O-PERF) should also be more cor-
related with their performance on the CFMT as experience
(E) grows. As predicted, a regression analysis found that,

as experience grows, the shared variance between the
CFMT and O-PERF increased monotonically from essen-
tially 0 to 0.59 along the six groups (see Figure 2A). The
result indicated that the correlation is indeed moderated
by experience: When participants had sufficient experi-
ence with nonface objects, if they were found to perform
poorly (well) with faces, they were found to also perform
poorly (well) with nonface objects. This result suggests
that data showing no or little correlation between object
and face performance result from not taking into account
the participant’s level of experience with the objects.

These results are consistent with a neurocomputational
model of face processing (“The Model” [TM]; Cottrell &
Hsiao, 2011; Dailey & Cottrell, 1999). TM has been used
to explain how and why an area of visual expertise for
faces (the FFA) could be recruited for other nonface object
categories: The resources in the face network can be
shared with other object processing, provided that this
processing is at the subordinate (expertise) level task
(Tong, Joyce, & Cottrell, 2008; Joyce & Cottrell, 2004).

The present implementation of TM is similar to the
expert network described in Tong et al. (2008): (1) images
are preprocessed by Gabor filters, modeling V1; (2) the
Gabor representation is analyzed by PCA, which we
consider to correspond to representations in the occip-
ital face area; and (3) a neural network with one hidden
layer is trained to recognize individual faces. The model
is then trained on object categories at the subordinate
level. That is, we assume that experience with a category
leads to recognition at the subordinate level (e.g., white,
brown, and portobello mushrooms).

Because this is an individual differences study, one
network corresponds to one participant. We used indi-
vidual behavioral data from Gauthier et al. (2014), includ-
ing CFMT scores, VET scores, and VET category experience
scores. Because Gauthier et al. (2014) found self-report of
faces to be less reliable than that for objects, we simply
assumed that all participants have a very large amount of
experience with faces, so that their CFMT score represents
their domain general ability v. We therefore identify v with
the CFMT score and map that score to the number of
hidden units. We map the self-rated experience score E
to the number of appearances of individual items within
a specific category during training. As described above,
we first train the network on faces to simulate the ability
expressed by the CFMT performance and then train on
three nonface object categories (butterflies, cars, and
leaves) to simulate the abilities tested by the VET. We show
that the shared variance between the recognition accuracy
on faces and the average recognition accuracy on nonface
objects increases as experience with the nonface object
categories increases, consistent with Gauthier et al.’s data.

In Gauthier et al., the correlation with VET scores was
not obtained when they used data from a single category
on the VET. Instead, they had to average over the expe-
rience with all VET categories, which we replicated here.
However, when we increased the number of participants

Wang, Gauthier, and Cottrell 559



(networks), we found correlations based on single cate-
gories. Consequently, we predict that the correlation
between scores on the CFMT and on the VET will be ob-
served depending only on experience with a single cate-
gory, if enough participants are tested. This prediction of
the model has yet to be tested.

Furthermore, we show that the effect of experience
moderating the correlation between VET and CFMT scores
is not observed in our model if it is only trained to make
basic level categorizations; hence, we predict that this
effect is carried by the FFA. This suggests that CFMT scores
should have the increasing correlation with VET scores
based on not only mere experience with a category but
also the kind of experience with a category, where mem-
bers of the category are processed at the subtype level.

Finally, we run an analysis on the net input of hidden
units in two networks with different levels of experience
and show that the power of experience is to expand the
representational space to a larger region, where each
individual object is more separated. The experience
moderation effect is a direct reflection of this power. This
phenomenon is also consistent with previous research
using TM that demonstrates why the FFA is recruited
for other domains of expertise (Tong et al., 2008).

METHODS

Architecture of TM

In general, TM is constructed using four layers that rep-
resent the human visual system from low-level features
to high-level object categorizations (Figure 1). Given an
input (retina level), we first pass the stimuli through a

layer of classical Gabor filter banks, which represent the
receptive fields of V1 complex cells (Daugman, 1985).
The Gabor filters are composed of five spatial scales
and eight orientations. In the second layer, the Gabor
filter responses are processed using PCA to reduce the
dimensionality and perform efficient coding. The PCA
layer models the information extraction process beyond
primary visual cortex, up until lateral occipital region
(LOC). We think of this layer as the structural description
layer from the classic model of Bruce and Young (1986),
that is, the level where the representation is suitable for
face recognition and facial expression analysis. Because
PCA can be implemented using a Hebbian learning rule
(Sanger, 1989), we consider this step to be biologically
plausible. The next layer is the hidden layer in the neural
network. We consider the number of hidden units as the
available resources for the task. At this layer, features are
learned through backpropagation that are useful for the
task. For example, if the task is to discriminate different
faces, this layer will learn face-related representations
adaptively through learning, and we can assume this layer
corresponds to the FFA. If the task is to classify basic level
object categories, the layer will learn basic-level-related
representations, modeling those in the LOC. The fourth
layer is the output layer, which represents the catego-
ries of the different objects. This simulates the category
cells in pFC. At each layer of the preprocessing network,
there is a normalization step before giving them to the next
layer. Each image pixel value is z scored independently
across the image set; the Gabor filters are normalized to
be a percentage of the total responses of the eight orien-
tations for each location, scale, and image; and each prin-
cipal component value is z scored across the data set.

Figure 1. Model architecture.
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Data Set and Preprocessing

We use four object categories in all of our experiments:
butterflies, cars, faces, and leaves. The three nonface
object categories are three of the eight VET categories.
The reason we chose these three domains is that there
are readily available data sets for these VET categories
that include subordinate level labels. We collected the
images from four separate data sets: (1) faces, the
NimStim Face Stimulus Set (has 646 images across 45 indi-
viduals; Tottenham et al., 2009); (2) butterflies, the Leeds
Butterfly Data Set (has 832 images across 10 species; Wang,
Markert, & Everingham, 2009); (3) cars, the Multi-view Car
Data Set (has approximately 2000 images for 20 models;
Ozuysal, Lepetit, & Fua, 2009); and (4) leaves, the One-
hundred Plant Species Leaves Data Set (has 1600 images
for 100 categories; Mallah, Cope, & Orwell, 2013). For
every object category, we randomly chose 16 images from
each of 10 randomly selected subordinate level categories
to form the training set (12 images per individual) and
test set (four images per individual1). We first transform
all images to grayscale and crop them to a uniform size
of 64 × 64 pixels. We then process them through Gabor
filter banks as defined in Lades et al. (1993), with eight dif-
ferent orientations ranging from 0 to 7π

8 and five spatial
scales. To make the filter response values in the same
range, we normalize them across orientations for each
scale on a per-image basis, so there is a low-frequency to
high-frequency representation of the image. We normalize
them across orientations for each scale on a per-image
basis, so there is a low-frequency to high-frequency rep-
resentation of the image. We normalize the response this
way because we hypothesize that the downstream cells
perform similar normalizations as the retina, which per-
forms contrast normalization. In addition, this represen-
tation equalizes the power across spatial frequencies, so
none dominate the representation. We sample the 40
Gabor filter responses in an 8 × 8 grid over the image, re-
sulting in a 2560-dimensional vector to represent a single
image. The PCA step removes the redundancy of this rep-
resentation by decorrelating the filter responses and gen-
erates a lower dimensional vector for efficient further
processing. We perform PCA separately on the five scales,
keep the eight eigenvectors with the largest eigenvalues
for each scale, and project all Gabor filter responses
for each image onto the corresponding eigenvectors. The
40 projections are z scored by dividing by the square root
of the corresponding eigenvalue before presentation to
the neural network.
As in previous work (Tong et al., 2008), the label we give

to the hidden layers (LOC or FFA) depends on the level of
categorization. We hypothesize that LOC performs basic
level categorization and FFA is involved in fine level dis-
crimination. As we showed in previous work, this changes
the representation at the hidden layer dramatically, in that
hidden units in the LOC model clump categories into
small regions of representational space, whereas the hid-

den units in the FFA model increase within-category dis-
tance, spreading members of a category out into different
locations in representational space.

Mapping and Network Training

To model Gauthier et al.’s experiment, we represent
each participant by one network. The data for each of the
256 participants are used to set the parameters for each
network. In the psychological experiment performed by
Gauthier et al. (2014), there are two key variables: the
domain general visual ability, v, and the self-reported
experience of the object categories, E. On the basis of
Gauthier et al.’s theory, we write the following relation:
Performancecat ∝ v ⋅ Ecat. That is, v is only expressed in
performance via experience with a category. We can nomi-
nally think of E as a number between 0 and 1, although
this is transformed in our model to a more relevant range
of experience for the networks. We assume that the maxi-
mum value of E is the value for faces (every participant has
maximal experience with faces), which means we can mea-
sure v directly from each participant’s data as their perfor-
mance on the CFMT (a number from 0 to 1). E is given
directly in the self-report data (a number from 1 to 9).

We assume that v is based on the available representa-
tional resources of the participant for processing faces
and objects; hence, we map v to the number of hidden
units in each network using a simple function. With more
hidden units, the network in general will generate higher
dimensional and more accurate features for a given
object category, thus improving the classification per-
formance. We choose the particular mapping through
cross-validation so that we do not use too many hidden
units for the size of our data set, which would result in
poor performance from overfitting.

We use a linear function to map the reported experi-
ence (i.e., 3 + E) to the frequency of individual exemplars
in an object category in the training set. In Gauthier et al.
(2014), the test–retest reliability for the self-reported expe-
rience measure, O-EXP, for nonface object categories is
much higher than that of faces (.60). As noted above, we
imagine that face experience is maximal for each partici-
pant, and for the other categories, we use a linear mapping
from the self-reported O-EXP, as the simplest possible un-
biased estimate of the relationship between reported expe-
rience and training examples. Because, in our database, we
have 12 images each of 10 subordinate categories for each
type (faces, cars, leaves, and butterflies), if a participant has
Experience level 1 with leaves, they will see four exemplars
of each leaf or 40 images of leaves. If they have Experience
level 9, they will see all 12 exemplars. We repeat the smaller
number of exemplars to match the number of training in-
stances in a model network’s “day.” Hence, we are map-
ping O-EXP to the variety of experience with an object
category.

For the faces, always use all 120 images of 10 people in
the training set. The scaling above is calibrated to reach

Wang, Gauthier, and Cottrell 561



480 updates of the weights per epoch, again, providing
each network with an equal length “day.” Hence, given
a fixed training time (e.g., one epoch), different object
categories have a different variety of training examples
based on their level of experience. This mapping is rea-
sonable given that more experience with a category
should lead to more variety of experience with a catego-
ry. Consider, for example, that a good chef will know
many different varieties of mushroom, where a less expe-
rienced cook may know only two or three.

As a result, our variable mapping and general training
process of the network are as follows: We map v to the
number of hidden units and E to the amount of training
examples that appear at each training iteration. For each
network, we train on subordinate level face identification
first to simulate the process of gaining expertise on faces.
This is intended to reflect the fact that, before humans
become familiar with the various species of butterflies,
for example, they had expertise on faces. After training
on individuating faces, we add the three nonface object
classes (butterflies, cars, and leaves) into the network by
adding extra sets of output nodes and new training exam-
ples. In Experiments 1 and 2 in the next section, as the
task is to discriminate the 10 individuals in each category,
all networks have 40 output nodes. In Experiment 3, as
we only perform basic level categorization of the nonface
categories, the network only has 13 output nodes, with
10 for individual faces and three for each nonface object
category. We measure the recognition accuracy on the
test set for each object when we finish training and use
this score to model the VET performance.

RESULTS

We will describe three simulations in this section. The
first experiment is intended to model directly the psycho-
logical experiment performed by Gauthier et al. (2014)
that showed that the correlation between performance
on the VET and the CFMT increases with experience with
objects. In that experiment, the level of experience was
averaged across categories because they did not find a
correlation between performance on the VET for a single
category based on experience with that category. The
second experiment provides a prediction that, if more
participants were used, the correlation would emerge
at the single category level. In the first and second exper-
iments, the networks were trained to be “experts” in the
categories, that is, they were trained to individuate peo-
ple, car models, and butterfly and leaf species. This sug-
gests that the correlation emerges as a result of shared
variance within the FFA. The third experiment predicts
that we would not see the experience moderation effect
based on basic level experience—expertise is necessary.
Finally, we analyze networks trained to be experts to
show why the experience moderation effect appears
when using the same hidden units, counter to the intuition
that there should be a competition for shared resources.

Experiment 1: Modeling Gauthier et al. (2014)

Gauthier et al. hypothesized a single underlying visual
ability, v, that is only expressed through experience. This
visual ability can be measured by performance on a face
recognition test like the CFMT, as we all have a great
deal of experience with faces. If v is a shared ability, it
should become expressed in performance as a function
of experience with nonface objects.
To model their experiment and results, we make a

one-to-one mapping of v and E to our neural networks,
with each network representing one human participant.
Because Performancecat ∝ v ⋅ Ecat (according to Gauthier
et al.’s hypothesis) and every human participant is as-
sumed to have high and relatively similar experience with
faces, their v is explicitly expressed by their face recog-
nition score on the CFMT. We therefore initialized the
network based on the participant’s CFMT score by map-
ping that number to the number of hidden units accord-
ing to the following formula:

Nhidden snetð Þ ¼ 34� CFMT shð Þ−14b c

where sh represents a particular human participant, snet is
the corresponding network modeling that participant,
CFMT(sh) is the percent correct of sh on the CFMT, and
Nhidden(snet) is the number of hidden units for that par-
ticipant’s network. The CFMT scores in Gauthier et al.’s
data range from 0.4722 to 1, so Nhidden ranges from 2 to
20. As, in general, Nhidden must be matched to the size of
the data set for good generalization, our range of hidden
units is chosen by cross-validation to ensure that there
are sufficient resources at the maximum number to pro-
vide good generalization without overfitting.2

Similarly, the formula for mapping self-rated experi-
ence (O-EXP) to the number of training samples for each
subordinate object category is as follows:

Nsample category; snetð Þ ¼ 3þO‐EXP category; shð Þ

As O-EXP ranges from 1 to 9, then the number of training
samples ranges from 4 to 12 (12 is the maximum number
of individual training samples in the data set for each in-
dividual). Hence, we use a fraction of the data set to learn
each object when the participant has lower experience,
whereas we use the full data set to train the networks
with the highest experience. For faces, we assume O-EXP
is 9. Note that, as described above, we must ensure that
the networks are trained with the same total amount of
images per epoch so that every network has the same
number of updates. That is, there is the same number of
“hours in the day” for each network. We set this number
to 480, as this is the size of the most diverse training set
(120 images of 10 individuals for four categories). We use
Nsample to compute a proportion of the data set. That is,
assuming leaves and cars are the only two object categories
for the moment, Nsample if for leaves and cars is 6 and 12,
respectively (with Nsample = 12 by definition for faces), the
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proportion of the training set that are leaf images is 6/(6 +
12 + 12) or 20%.
We use stochastic gradient descent (online back-

propagation) to train the network. A learning method
with equivalent results to backpropagation, contrastive
Hebbian learning, can be implemented in a biologically
plausible way (O’Reilly, 1996; Plaut & Shallice, 1993).
Although less biologically plausible, backpropagation
training is much more efficient than contrastive Heb-
bian learning. The input vectors are z scored, and the
weights are drawn uniformly from the range of −0.5 to
0.5. In all experiments, we set the learning rate to 0.015
and momentum to 0.01. As mentioned in the Methods
section, we train the network on individuating faces
first. We stop the face network training in either one
of two conditions: If it hits the stopping threshold

(mean squared error of 0.005, determined using cross-
validation to provide the best generalization) or if the
number of training epochs reaches 100, when we as-
sume the network has gained sufficient expertise on
face recognition as the training time is enough. We
then start the second training phase by introducing
the three nonface object categories into the training
set and add 30 output nodes, corresponding to sub-
ordinate level categorization of the 10 individuals in
the three categories. The network is trained until the
error is below 0.005 or training epoch reaches 90. At
the end of the training process, we measure the recog-
nition accuracy on the test set for all four object cate-
gories and calculate the correlation between the score
on faces and averaged nonface objects. We show the
result in Figure 2B.

Figure 2. Results of Experiment 1. The first row (A) shows the experimental data from Gauthier et al. (2014). The second row (B) shows our
modeling result. Each dot in B represents a single participant network whose parameters (v and E ) are calculated based on the corresponding
human participant. Each line in the graph represents the regression for each group between their CFMT scores against their VET or nonface object
recognition scores. The bottom row shows how the participants are divided into six groups based on their self-rated experience score in VET object
categories (O-EXP). For example, the second column (top row) shows the data from participants (dots) whose O-EXP score is between 1.5 and
0.5 SDs below the mean.
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From Figure 2B, we can clearly see that, as experience
(O-EXP) grows, the shared variance between face recog-
nition performance and the averaged nonface object recog-
nition accuracy increases monotonically from 1.2 × 10−4

to 0.60585. This result matches those of Gauthier et al.
qualitatively and demonstrates that our network training
strategy and variable mapping of v and E are reasonable.
The mapping of v to various numbers of hidden units in
the network spans the accuracy of face recognition ( y axis
of Figure 2B), suggesting the hypothesis that the variance
across individual participants in the domain-general object
recognition ability is the amount of representational re-
sources in cortex (hidden units in the neural network).
The mapping of E to the number of training examples on
nonfaces spans the accuracy of nonface object recogni-
tion (x axis of Figure 2B), clearly illustrating that higher
experience will generally facilitate object recognition
performance by moving them from all being relatively
low to a range of scores, expressing the underlying com-
putational resources.

Experiment 2: Correlation with a Single Category

In Gauthier et al. (2014), the increasing trend of correla-
tion was not observed for any individual category. Rather,
it only appeared for the averaged VET score (O-PERF)
against the CFMT score. This is theoretically problematic

because, according to their hypothesis, v is a domain-
general visual ability and face recognition should not be
independent of any nonface object category when peo-
ple have sufficient experience in that category. In the
original study, this situation was attributed to the fact
that self-reports were likely very imperfect measures of
experience with a category. However, in the present sim-
ulations, experience had a very direct mapping to each
network’s training, and yet, we also did not see the phe-
nomenon clearly in our simulations when using individ-
ual categories (see Figure 3). One possible explanation is
that more participants are required to show the effect as
there are few “experts” in the general population. In this
experiment, we use a much larger number of participant
networks and ability levels. We expect to see the same
experience moderation effect as in the averaged category
result if our assumption is true.
In this experiment, we use 1000 different networks

rather than the 256 in the previous experiment. To pro-
duce a larger range of network performance, we extended
the range of hidden unit numbers and experience levels.
We manually created the initialization of the values of v
and E for the participant networks. Wemap v to the range
Nhidden 2 {1,3,5,7,9,12,15,18,21,24,28,32,36}. We deter-
mined in advance that there is still no overfitting with
up to 36 hidden units. For E, we set the range of experi-
ential variety to Nsample 2 {2,4,6,8,10,12}. As before,

Figure 3. Result showing the correlation between the networks’ face recognition performance and single nonface object recognition performance
(butterflies, cars, and leaves) in Experiment 1, as a function of experience. Interestingly, although there appears to be an overall trend of increasing
correlation (especially for the leaves), it is generally smaller and not monotonic when compared with the result using averaged performance
(Figure 2B).
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higher numbers of samples indicate more varied experi-
ence with that category. The number of participant net-
works at each level of E and v is determined by a
Gaussian distribution, and the number of training exam-
ples falls in the given interval from 2 to 12. This approach
tends to assign more members to the middle value in
the set, simulating the fact that most people should have
intermediate level of E and v. The training procedure,
data set we use, and network parameter settings are the
same as in Experiment 1. We show our result in Figure 4.
As can be seen from Figure 4, as experience grows,

the shared variance (R2) between face and all three indi-
vidual nonface objects increases monotonically, from a
value near zero ( p > .1) up to a value greater than 0.7
( p < 5 × 10−5). Not surprisingly, when we calculate
R2 between face and averaged nonface performance,
the increasing correlation trend still exists, from .048

( p = .1873) to .829 ( p < 10−6). We ran the experiment
10 times, and the increasing correlation trend is very
robust. The number of participants is one factor in ob-
serving the experience moderation effect at the single-
category level. A possible explanation for this finding is
that using the averaged category experience leads to an
aggregation effect (Rushton, Brainerd, & Pressley, 1983).
At the single-category level, the smaller amount of data at
any level of experience will be more variable because of
factors such as different initial random weights, different
local minima, noise, and so forth. With several categories,
these uncorrelated sources of noise are reduced. With
more participants at any given level of experience, we
can also eliminate this nuisance variance, as long as it is
not correlated across different participants with similar
experience, in the same way as it was not correlated
across different categories for the same participants. Our

Figure 4. Results of Experiment 2. The top three rows show the trend of shared variance between face recognition accuracy ( y axis) and single
nonface object recognition performance (x axis; butterflies, cars, and leaves for each row), as a function of experience. The last row shows the
correlation on averaged nonface object recognition performance. Each dot represents a participant network, and the red regression curve is also
plotted for each group. As we can see, the correlation is monotonically increasing when experience grows, regardless of whether individual or
averaged performance is used.
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finding predicts that, if more participants were recruited,
the experience moderation effect would be found at the
single category level in actual behavioral data.

Experiment 3: Basic Level Classification

In Experiments 1 and 2, the networks representing each
participant are trained and tested on subordinate level
classification tasks, which means their job is to discrimi-
nate individuals (Is it Tom/John/Mary…or Benz/Ford/
Toyota…?) within a category (faces or cars). That is, the
networks are trained to become experts in these specific
tasks. On the basis of our previous modeling (Tong
et al., 2008) and fMRI (Wong, Palmeri, Rogers, Gore, &
Gauthier, 2009) work, we would expect the FFA to be
a main site for such subordinate level learning. This how-
ever begs the question, does the overlap in abilities we
and Gauthier et al. (2014) have measured depend on
expertise at the subordinate level? In other words, would
we see the same result of experience moderating the re-
lationship between face and object recognition if the net-
works were instead trained on basic level categorization?

Hence, in Experiment 3, we test this hypothesis by per-
forming the same experiment on our networks but train-
ing the network that has been pretrained on faces to
classify the objects at the basic level. In a previous model-
ing study (Tong et al., 2008), they analyzed the effect of
both subordinate level and basic level classification tasks
using the same neurocomputational modeling approach
we use here and found that there is a large difference in
the hidden layer representational space developed over
training in basic versus expert level categorization. Here,
we investigate the result of an expert network (a face
identification network) being additionally trained to be
a basic level categorizer, and we compute the correlation
between face identification performance and basic level
categorization performance within the same network. If
we still observe the experience moderation effect, it
would indicate that the experience moderation effect is
not specific to the subordinate level; if not, it suggests
that the experience moderation effect requires that par-
ticipants’ experience be at the level of subordinate level
categorization or at least rules out that it works for any
training task.

To model the basic level classification task, the only
change we make from Experiment 2 is altering the num-
ber of output nodes and collapsing across individuals. We
keep training the output nodes for faces to make sure the
model remains effective at individuating faces. As we
have 10 individuals for each of the four object categories,
all networks in Experiment 2 have 40 output nodes; here,
the networks only have 13 output nodes (10 faces + 3
nodes representing each nonface object category: butter-
flies, cars, and leaves). The variable mapping and training
procedure are otherwise the same as Experiment 2. The
result is shown in Figure 5.

As can be seen from Figure 5, as experience grows, we
do not observe increasing correlation between face and
nonface recognition performance, no matter whether
experience is measured based on a single category or
across categories. Instead, we observe a relatively constant
correlation between performance in the two domains,
regardless of how much experience the network has on
objects. For the correlation results on single categories,
we either find no correlation (leaves) or nonmonotoni-
cally increasing low correlation (butterflies and cars).
When performance is averaged across categories, how-
ever, because of the effect of aggregation, the overall
correlation increases to around .35; nevertheless, the cor-
relation does not monotonically increase as experience
grows.
This phenomenon is easily explained. In Experiments 1

and 2, the variation across domain-general visual ability
(v) allows the networks to express the full range of face
recognition ability, with the face recognition performance
spread out between 0 and 1 ( y axis in Figures 2, 3, and 4).
However, because of the constraint of experience for the
nonface objects, the network cannot express the full
range of object recognition ability until the experience
level is high. This can be seen from the results in Experi-
ments 1 and 2 (x axis in Figures 2, 3, and 4), where the
dots are “squeezing” around zero for low-experienced
objects and gradually spread out when experience in-
creases. In general, the cause for low recognition perfor-
mance is either that the participant network has low v
(few hidden units) or because the subordinate level task
is very hard and the resources are not sufficient.
In basic level categorization, however, the task is easier

(the networks only have to recognize all leaves as leaves,
all butterflies as butterflies, etc.), and to do so, the net-
works do not need a large number of hidden units, nor
do we need very much training. Hence, all of the net-
works (and by inference people) have enough resources
to attain a relatively high score on basic level object rec-
ognition. This is shown clearly in Figure 5: Face recogni-
tion performance is spread out as usual ( y axis), and
object recognition performance (x axis) has much lower
variance in general. This explains why the correlation in
the low-experience bins is approximately the same as in
the high-experienced bins, and the increased in correla-
tion with face recognition performance from the lowest
level of experience (.32) to highest level of experience
(.41) is not as large as in subordinate level classification
(Figure 4, from .05 to .83). Experience does not mediate
performance in an easy task such as basic level recogni-
tion, as the performance is dominated by the relative eas-
iness of the task.
Hence, we infer that the type of experience matters in

deciding how abilities in different domains overlap:
Knowing the kind of leaf, car, or butterfly leads to an in-
creasing correlation of performance with face recogni-
tion, whereas only knowing that a leaf is a leaf and so
forth does not. The level of task, even if both tasks involve
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categorizing images, has significantly different impacts on
the outcome of the experiment. The need to differentiate
between individual objects within a visually homoge-
neous category, rather than placing them into categories
that differ in the overall part structure, produces the
moderation effect shown in Experiments 1 and 2.

Analysis: The Power of Experience

Given the finding that more experience leads to higher
correlation between subordinate level classification tasks
in Experiments 1 and 2, we may wonder why this hap-
pens. For example, it seems intuitive that, if the same
hidden units are being used in both tasks, then there
should be competition for these representational re-
sources, and higher performance on faces should mean
that more hidden units are dedicated to faces, which
would result in lower performance on objects. This turns
out not to be the case. Tong et al. (2008) showed that the
hidden unit representation learned in a face identification
task separates faces in hidden unit space, making it easy
for a classifier to separate them. However, this same
“spreading transform” generalized to novel categories.

For example, they showed that, when novel objects
(“Greebles”) were presented to the trained network for
the first time, without any training, they were already
spread out in hidden unit space. In this experiment,
using a similar analysis of the net inputs of the hidden
units, we show how this effect develops as a result of
experience.

More specifically, we analyze the hidden units on two
participant networks with different levels of experience.
Recall that we map experience (E ) to the number of
training examples per individual. For this analysis, we
set the number of training examples per object for the
two networks to be 3 and 12, respectively, representing
low and high levels of experience. Both networks have 50
hidden units, so they have sufficient ability (v) to give the
best performance. We train both networks on individuat-
ing faces first and continue training on recognizing mixed
object categories. We measure the performance at the
end of training. During training, we record the net input
of the hidden units for all training examples at six dif-
ferent time points (see Figure 6), which enables us to ob-
serve the evolution of the internal representation. For
data collected from each participant network, we

Figure 5. Result of Experiment 3 (basic level classification). The format is the same as Figure 4, with the top three rows showing the correlation
between performance on face and single nonface objects and the last row showing the correlation on averaged nonface objects. There is no
monotonically increasing correlation in either single or averaged category performance.
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perform PCA on them and visualize the projections on
the first and second principal components on a 2-D sub-
space. The result is shown in Figure 6. Note that, for
Columns 1 and 2, the different colors represent different
faces to show how the faces are separated in the space.
Although some faces look like they are close in the space,
they are separated by other dimensions. For Columns 3–6,
the different colors represent different categories.

Several conclusions can be drawn from the results.
First of all, for the networks trained on face recognition
only (the first two columns), no difference in experience
exists, so the representations that the networks develop
are similar: Training on differentiating faces gradually
separates each individual face in the subspace (second
column), compared with the initial cluster at the center
(first column). Second, when we take a close look at the
third column, the nonface objects are already dispersed
to the extent of the representational space formed by
faces, even without training. This suggests that the pro-
jection into the hidden unit space learned for faces,
which spreads out the faces, generalizes to novel objects,
spreading them out as well. This is the same finding as in
Tong et al. (2008), where it was shown that Greebles
were spread out by the face network before it was even
trained on Greebles. In that article, we also showed that
there was nothing special about faces per se; rather, it is
the task that is learned (individuation of similar looking
items) that leads to this spreading transform. This result

held for our model of the FFA, which suggests that the
effects found in the Gauthier et al.’s (2014) article are al-
so a reflection of expertise with the nonface categories.
Finally, when training on multiple object categories, we
find that more training generally produces a larger
spreading effect for both networks (the change from
the third column to the last column), but more experi-
ence spreads the objects to an even greater extent (com-
pare the last columns in the two rows). In data not
shown, both of these networks achieve 87.5% accuracy
on face recognition, but the network with less experience
with objects only achieves an average accuracy of 16.67%
on nonface objects. This is well above chance but much
lower than the more experienced network, which
achieves an accuracy of 83.33% on objects. As a result,
we can speculate that greater experience actually leads
to a greater spread in the hidden units of the network,
and this spreading transform positively correlates with
performance on the object recognition task. Performance
on objects and faces is similar in a network with more
experience and very different in a network with less ex-
perience, as we saw in Figures 3 and 4. This is the power
of experience.
The above analysis is based on the PCA projection of

the net input on a 2-D space. Because there are 50 hid-
den units in the network, we want to explore whether the
phenomenon could generalize along all dimensions. As
we cannot visualize a 50-dimensional space, we take five

Figure 6. Visualization of the development of net input of hidden units over network training. First row: participant network with low
experience (three training examples per individual). Second row: participant network with high experience (12 training examples per individual).
Each column represents the data collected from corresponding training epoch (shown in the title). In the two left columns, the colored dots
represent different individual faces. In the four right columns, the colored dots represent different object categories, shown in the legend. Note:
The y axis changes from [−15,+15] to [−100,+100] in the fourth column for clarity.
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measurements for each dimension to help us understand
its behavior:

1. Max: the maximum value of the projection on a prin-
cipal component dimension, for each single category
(locally) and across all of the categories (globally).

2. Min: the minimum value along a dimension, for each
single category and across all of the categories.

3. Var: the variance along each dimension, for each
single category and across all of the categories.

4. Inter: the average between-class distance, measured
using Euclidean distance between the center of each
object within the same category to the center of the
current category and averaged across all categories.

5. Intra: the average within-class distance, measured using
Euclidean distance between each data point belonging
to a single individual to the average of that individual’s
locations and averaged across all categories.

Among the five measurements, Max, Min, and Var are
measured both globally (across all categories) and locally
(for each object category), whereas Inter and Intra are
only measured globally. Max, Min, and Var indicate how
far the individual representations are spread out along
each dimension, whereas Inter and Intra measure the
behavior for each group. The results are shown in Figure 7.
From the local measurement results in Figure 7, we

can clearly see that

1. For Max and Var, the value of high-experience net-
work is always greater than low-experience network.

2. For Min, the value of high-experience network is
always smaller than low-experience network.

These findings hold for all four object categories. These
results demonstrate that, for individual representations,
high levels of experience separate them along all dimen-
sions in the space.
For the global measurement (combined all categories),

we can see that

1. For Max, Min, and Var, their behaviors are the same as
local measurements above.

2. For Inter and Intra, the value of high-experience net-
work is mostly greater than low-experience network.

Imagine that each object forms a cluster in the space.
The Inter and Intra results indicate that, as experience
grows, each individual resident within that cluster will
become further apart from its neighbors and the whole
cluster itself will also move away from other clusters,
like the “redshift” phenomenon in physical cosmology
(Hubble, 1929). As this “redshift” of object representation
happens in all dimensions of the hidden unit universe,
it suggests that the essential power of experience is to
generate a spreading transform for objects in the rep-
resentational space and, accordingly, to facilitate a sub-
ordinate level classification task. The experience moderation
effect, as can be seen in our experiment, is a direct out-

come/reflection of this internal power, in a large population
of participants.

In addition, we measured the entropy of the net input
of all the hidden units. Entropy is a measurement about
how much information is preserved in the hidden units,
and it is scale free. If the data are highly scattered, the
variance will be high, and more information will be car-
ried. To calculate the entropy, we obtained the net input
value of all hidden units across examples in the training
set. We then calculated the entropy for each of the hid-
den units by getting the probability distribution (the nor-
malized histogram) of the values, thereby computing pi
for each bin, and then summing pi log pi over the bins
(the results were robust across various bin sizes). We
then averaged the entropy over all of the hidden units.
To examine how the entropy develops over time, we plot
its value as a function of training iterations, as shown in
Figure 8. As we can see, although both networks show a
general increasing trend of the entropy, the network with
more varied experience always has higher entropy. This
result is expected based on the PCA visualization in Fig-
ure 6, as the representations for both face and nonface
objects become more separated as training proceeds.
Again, this result demonstrates that the power of expe-
rience is to learn a more separated representation for
objects to facilitate the subordinate level classification
task.

Furthermore, when looking into the local and global
measurement of variance in Figure 7, we can see that,
for the more experienced network, a larger number of
dimensions accounts for more variance than for the
less experienced network. This suggests that the more
experienced network contains more complex infor-
mation that must be decomposed into several different
dimensions, which provides another way of measuring
how the network is spreading out the representation of
the categories.

DISCUSSION

Neurocomputational models can provide insight into be-
havioral results by suggesting hypotheses for how the
results came about. We can then analyze the models in
ways that are difficult or impossible in human participants
or animals. In this article, we explored how a neuro-
computational model can explain the experience mode-
ration effect observed by Gauthier et al. (2014). We
trained networks to perform the same tasks humans have
to perform, that is, to recognize objects and faces. We used
one network per participant, setting their parameters
based on the individual participant data. We mapped
domain-general visual ability, v, to the number of hid-
den units and experience, E, to the number of training
examples per individual. We showed that the model fits
the human data quite well: As the networks gain more
experience with the object categories, the correlation
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Figure 7. Visualization of the measurements taken on all 50 PCA dimensions of the hidden unit net inputs. In all graphs, the blue lines represent
the network with a high level of experience, and the red lines represent the network with a low level of experience. We take five measurements:
Max, Min, Variance, Intergroup distance, and Intragroup distance, as described in the text. The top three rows show the result of Max, Min,
and Var on the four object categories (left to right: faces, butterflies, cars, and leaves). The last two rows show the result of all measurements
on all categories.
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between performance on objects and performance on
faces increases.
In Experiment 1, as in Gauthier et al. (2014), we had to

average across category experience to obtain the correla-
tion with face processing performance. That is, we could
not significantly predict face recognition ability based
solely on performance within a single category. In Exper-
iment 2, we “recruited” more neural network participants
and predicted that the effect should hold at the single-
category level, provided that there are a sufficient num-
ber of participants that span all levels of visual ability and
experience.
Finally, we also attempted to replicate the effect with

networks that did not differentiate faces but simply
placed objects and faces into basic level categories. Here,
we did not find an experience moderation effect, sug-
gesting that the type of experience and level of the task
(basic or subordinate level discrimination) is an important
factor to be considered in understanding these effects.
The conclusion that task matters in terms of the kind of

perceptual expertise that is acquired and for the neural
substrates recruited is supported by prior work. For
instance, novel objects become processed in a holistic
manner, like faces, if they are from a category for which
participants practiced individuation but not categoriza-
tion (Wong, Palmeri, & Gauthier, 2009). Likewise, brief
individuation training improves discrimination of new faces
from another race, whereas a different training task with
the same faces that is as demanding but does not require
individuation does not improve discrimination (McGugin,
Tanaka, Lebrecht, Tarr, & Gauthier, 2011). Qualitatively
different patterns of neural representations are observed
after training with novel objects in tasks that produce
different kinds of behavioral results (Wong, Folstein, &
Gauthier, 2012; Wong, Palmeri, Rogers, et al., 2009).
This experiment predicts that the source of the expe-

rience moderation effect is not in regions of the brain

that are sensitive only to category level, as opposed to
regions that are associated with better performance in
individuation for objects and faces, such as the FFA
(McGugin et al., 2014; McGugin, Gatenby, et al., 2012;
Furl, Garrido, Dolan, Driver, & Duchaine, 2011; Gauthier
et al., 2000). One advantage of computational models
is that we can analyze them in ways we cannot analyze
human participants to provide hypotheses as to the
underlying mechanisms of an effect. For example, an
obvious question is, why isn’t there a “zero-sum game”
between the neurons allocated for each task? That is,
how can the same features be used for both faces, leaves,
cars, and butterflies?

Behavioral and neural studies show that face recogni-
tion and the recognition of other objects of expertise can
compete. The N170 face-selective ERP is reduced for
faces when they are shown in the context of objects of
expertise (Rossion, Kung, & Tarr, 2004; Gauthier, Curran,
Curby, & Collins, 2003). Behaviorally, nonface objects of
expertise compete with faces but not with objects with
which participants are not expert (McGugin et al., 2011;
McKeeff, McGugin, Tong, & Gauthier, 2010). fMRI re-
sponses to cars in FFA predict behavioral expertise with
cars when the cars are presented alone on the screen
and, to some degree, still when shown among other ob-
jects, but not when the other objects are faces (McGugin
et al., in press). What all these studies have in common is
that interference occurs when faces and objects from
another category of expertise have to be processed simul-
taneously or at least in very close temporal contiguity.
Again, this suggests that they are sharing representations.

Our analysis shows why this would be the case. The non-
linear transformation by the network at the backpropagation-
trained hidden layer displays a spreading transform that
separates similar-looking objects. This transform general-
izes to new categories. At the same time, as shown in the
last four columns in Figure 6, the representation of faces is

Figure 8. Entropy of hidden
units as a function of training
epochs. Blue dashed line:
network with more experience.
Red line: network with less
experience. The network with
more experience generally
has greater entropy across
training, suggesting that
the representation is more
separated. Error bars denote
±1 SE.
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interdigitated with the representations of other catego-
ries. Hence, the reason why we see interference in the
human participant studies is because of this shared repre-
sentation. In previous work (Tong et al., 2008), we hypoth-
esized that the FFA contains features useful for fine level
discrimination of faces and showed how these features
generalize to the discrimination of novel categories. Here,
we find the same result, shown in the third column of
Figure 6, where we find that objects are already separated
by the face features, that is, the transform that separates
individual faces also separates individual objects even at
the beginning of training on those objects. Given that
our model is a model of the FFA, we hypothesize that
the location of the experience moderation effect is in the
FFA, but more generally, it could be in any area where
face representations are more separated.

We conclude that the real power of experience at indi-
viduating objects within a homogeneous category is to
separate the objects in all dimensions of the representa-
tional space spanned by the FFA and that the experience
moderation effect is a direct reflection of this spreading
transform. These results support the argument that face
and nonface object discrimination are inherently cor-
related through the sharing of the same mechanism: The
better one is at face individuation, and the better one will
be at individuating objects, given sufficient experience
with objects.

One may speculate that one may also find an experi-
ence moderation effect at the basic level of categoriza-
tion. That is, if a participant shows high performance in
simply discriminating object categories and has a great
deal of experience in discriminating multiple categories,
performance in multiple domains should be correlated.
There is some evidence that a great deal of experience
with basic level categorization, as in letter recognition,
results in a different kind of expertise from that obtained
for subordinate level experience—different both in be-
havior and neural substrate (Wong, Palmeri, Rogers,
et al., 2009; Wong & Gauthier, 2007). One might hypoth-
esize that multiple vs, that is, a basic level v and a fine
level v, corresponding to different brain regions asso-
ciated with these tasks. That is, there must be a constraint
that the level of tasks be equalized before one can hope to
find such a correlation. In our model, we use fine level v.
Evidence for this hypothesis arises in recent work show-
ing that a neural network that is good at differentiating
the thousand categories of the Imagenet competition
(Russakovsky et al., 2014) develops features that are use-
ful in differentiating other categories (Wang & Cottrell,
2015; Zeiler & Fergus, 2014).

More recently, training backpropagation-based deep
neural networks has been shown to achieve state-of-the-
art performance on many computer vision tasks, such as
image classification (Szegedy et al., 2014; Krizhevsky,
Sutskever, & Hinton, 2012), scene recognition (Zhou,
Lapedriza, Xiao, Torralba, & Oliva, 2014), and object
detection (Girshick, Donahue, Darrell, & Malik, 2014).

Researchers also have used deep neural networks to
probe representations in neural data, especially in IT
(e.g., Güçlü & van Gerven, 2015; Cadieu et al., 2014;
Yamins et al., 2014). Remarkably, these studies have
shown that the features learned in the neural networks
can explain the representation in human and monkey
IT. As these networks are also trained by backpropagation,
they support our contention that our neurocomputa-
tional model is a reasonable model of FFA and LOC. As
a result, it is a promising research direction to use deep
neural networks to explain more cognitive/behavioral data
and to model how the brain works.
In summary, we suggest that the correlation between

visual processing of faces and objects is mediated by a
common representational substrate in the visual system,
most likely in the FFA, and that the reason for this media-
tion is that the FFA embodies a transform that amplifies
the differences between homogeneous objects. This trans-
formation is generic; it applies to a wide range of visual
categories. The generic nature of this transform explains
why there is a synergy between face processing and expert
object processing.
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Notes

1. Note that, for faces, “individual” refers to a particular person;
for butterflies and leaves, a particular species; and for cars, a
particular make and model.
2. In general, the number of hidden units depends on the
size of training set. In recent winner of ImageNet Large Scale
Visual Recognition Challenge, the networks are trained with
over 1.2 million images, and the final hidden layer has 4096 units
(Krizhevsky et al., 2012). However, if the same network is trained
on a smaller data set, the recognition accuracy is low because of
overfitting (Zeiler & Fergus, 2014).
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